A Task Driven Approach to the Synthesis of Spherical 4R Linkages Using Algebraic Fitting Method

Author(s):  
Ping Zhao ◽  
Xiangyun Li ◽  
Anurag Purwar ◽  
Kartik Thakkar ◽  
Q. J. Ge

This paper studies the problem of spherical 4R motion approximation from the viewpoint of extraction of circular geometric constraints from a given set of spherical displacements. This paper extends our planar 4R linkage synthesis work to the spherical case. By utilizing kinematic mapping and quaternions, we map spherical displacements into points and the workspace constraints of the coupler into intersection of algebraic quadrics (called constraint manifold), respectively, in the image space of displacements. The problem of synthesizing a spherical 4R linkage is reduced to finding a pencil of quadrics that best fit the given image points in the least squares sense. Additional constraints on the pencil identify the quadrics that represent a spherical circular constraint. The geometric parameters of the quadrics encode information about the linkage parameters which are readily computed to obtain a spherical 4R linkage that best navigates through the given displacements. The result is an efficient and largely linear method for spherical four-bar motion generation problem.

Author(s):  
Q. J. Ge ◽  
Ping Zhao ◽  
Anurag Purwar

This paper studies the problem of planar four-bar motion approximation from the viewpoint of extraction of geometric constraints from a given set of planar displacements. Using the Image Space of planar displacements, we obtain a class of quadrics, called Generalized- or G-manifolds, with eight linear and homogeneous coefficients as a unified representation for constraint manifolds of all four types of planar dyads, RR, PR, and PR, and PP. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of G-manifolds that best fit the image points in the least squares sense. This least squares problem is solved using Singular Value Decomposition. The linear coefficients associated with the smallest singular values are used to define a pencil of quadrics. Additional constraints on the linear coefficients are then imposed to obtain a planar four-bar linkage that best guides the coupler through the given displacements. The result is an efficient and linear algorithm that naturally extracts the geometric constraints of a motion and leads directly to the type and dimensions of a mechanism for motion generation.


Author(s):  
Q. J. Ge ◽  
Anurag Purwar ◽  
Ping Zhao ◽  
Shrinath Deshpande

This paper studies the problem of planar four-bar motion generation from the viewpoint of extraction of geometric constraints from a given set of planar displacements. Using the image space of planar displacements, we obtain a class of quadrics, called generalized- or G-manifolds, with eight linear and homogeneous coefficients as a unified representation for constraint manifolds of all four types of planar dyads, RR, PR, and PR, and PP. Given a set of image points that represent planar displacements, the problem of synthesizing a planar four-bar linkage is reduced to finding a pencil of G-manifolds that best fit the image points in the least squares sense. This least squares problem is solved using singular value decomposition (SVD). The linear coefficients associated with the smallest singular values are used to define a pencil of quadrics. Additional constraints on the linear coefficients are then imposed to obtain a planar four-bar linkage that best guides the coupler through the given displacements. The result is an efficient and linear algorithm that naturally extracts the geometric constraints of a motion and leads directly to the type and dimensions of a mechanism for motion generation.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiangyun Li ◽  
Q. J. Ge ◽  
Feng Gao

This paper studies the problem of spatial linkage synthesis for motion generation from the perspective of extracting geometric constraints from a set of specified spatial displacements. In previous work, we have developed a computational geometric framework for integrated type and dimensional synthesis of planar and spherical linkages, the main feature of which is to extract the mechanically realizable geometric constraints from task positions, and thus reduce the motion synthesis problem to that of identifying kinematic dyads and triads associated with the resulting geometric constraints. The proposed approach herein extends this data-driven paradigm to spatial cases, with the focus on acquiring the point-on-a-sphere and point-on-a-plane geometric constraints which are associated with those spatial kinematic chains commonly encountered in spatial mechanism design. Using the theory of kinematic mapping and dual quaternions, we develop a unified version of design equations that represents both types of geometric constraints, and present a simple and efficient algorithm for uncovering them from the given motion.


Author(s):  
Anurag Purwar ◽  
Zhe Jin ◽  
Qiaode Jeffrey Ge

In the recent past, we have studied the problem of synthesizing rational interpolating motions under the kinematic constraints of any given planar and spherical 6R closed chain. This work presents some preliminary results on our initial attempt to solve the inverse problem, that is to determine the link lengths of planar and spherical 6R closed chains that follow a given smooth piecewise rational motion under the kinematic constraints. The kinematic constraints under consideration are workspace related constraints that limit the position of the links of planar and spherical closed chains in the Cartesian space. By using kinematic mapping and a quaternions based approach to represent displacements of the coupler of the closed chains, the given smooth piecewise rational motion is mapped to a smooth piecewise rational curve in the space of quaternions. In this space, the aforementioned workspace constraints on the coupler of the closed chains define a constraint manifold representing all the positions available to the coupler. Thus the problem of dimensional synthesis may be solved by modifying the size, shape and location of the constraint manifolds such that the mapped rational curve is contained entirely inside the constraint manifolds. In this paper, two simple examples with preselected moving pivots on the coupler as well as fixed pivots are presented to illustrate the feasibility of this approach.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Ping Zhao ◽  
Lihong Zhu ◽  
Bin Zi ◽  
Xiangyun Li

When designing linkage mechanisms for motion synthesis, many examples have shown that the optimal kinematic constraint on the task motion contains too large deviation to be approximately viewed as a single rotational or translational pair. In this paper, we seek to adopt our previously established motion synthesis framework for the design of cam-linkages for a more accurate realization, while still maintaining a 1-degree-of-freedom (DOF) mechanism. To determine a feasible cam to lead through the task motion, first a kinematic constraint is identified such that a moving point on the given motion traces a curve that is algebraically closest to a circle or a line. This leads to a cam with low-harmonic contour curve that is simple and smooth to avoid the drawbacks of cam mechanisms. Additional constraints could also be imposed to specify the location and/or size of the cam linkages. An example of the design of a lower-limb rehabilitation device has been presented at the end of this paper to illustrate the feasibility of our approach. It is shown that our design could lead the user through a normal walking motion.


Author(s):  
Anurag Purwar ◽  
Saurabh Bhapkar ◽  
Q. J. Ge

This paper presents implementation of fixed-pivots, ground-link line, and tolerance based motion synthesis in the 4MDS (Four-Bar Motion Design System). This is a continuation of the first work reported on 4MDS, which provides an interactive, graphical, and geometric constraint based mechanism design system for the exact- and approximate-motion synthesis problems. Theoretical foundation of the 4MDS is laid over a kinematic mapping based unified formulation of the geometric constraints (circle, fixed-line, line-tangent-to-a-circle) associated with the mechanical dyads (RR, PR, and RP) of a planar four-bar mechanism. An efficient algorithm extracts the geometric constraints of a given motion task and determines the best dyad types as well as their dimensions that best fit to the motion. Often, Mechanism designers need to impose additional geometric constraints, such as specification of location of fixed pivots or ground-link line. If synthesized mechanism suffers from branch, circuit, or order defect, they may also desire rectified solutions by allowing a tolerance to certain or all task positions. Such functions are crucial to a practitioner and much needed during the conceptual design stage of machine design process.


Author(s):  
Ping Zhao ◽  
Lihong Zhu ◽  
Xiangyun Li ◽  
Bin Zi

When designing linkage mechanisms for motion synthesis, many examples have shown that the optimal kinematic constraint on the task motion contain too large deviation to be approximately viewed as a single rotational or translational pair. In this paper we seek to adopt our previously established motion synthesis framework for the design of cam-linkages for a more accurate realization, while still maintaining a one-DOF mechanism. To determine a feasible cam to lead through the task motion, first a kinematic constraint is identified such that a moving point on the given motion traces a curve that is algebraically closest to a circle or a line. This leads to a cam contour that is simple and smooth to avoid the drawbacks of cam mechanisms. Additional constraints could also be imposed to specify the location and/or size of the cam-linkages. An example of the design of a lower-limb rehabilitation device has been presented in the end of this paper to illustrate the feasibility of our approach. It is shown that our design could lead the user through a normal walking motion.


2016 ◽  
Vol 8 (6) ◽  
Author(s):  
Xiangyun Li ◽  
Jun Wu ◽  
Q. J. Ge

In an earlier work, we have combined a curve fitting scheme with a type of shape descriptor, Fourier descriptor (FD), to develop a unified method to the synthesis of planar four-bar linkages for generation of both open and closed paths. In this paper, we aim to extend the approach to the synthesis of planar four-bar linkages for motion generation in an FD-based motion fitting scheme. Using FDs, a given motion is represented by two finite harmonic series, one for translational component of the motion and the other for rotational component. It is shown that there is a simple linear relationship between harmonic content of the rotational component and that of the translational component for a planar four-bar coupler motion. Furthermore, it is shown that the rotational component of the given motion identifies a subset of design parameters of a four-bar linkage including link ratios, while the translational component determines the rest of the design parameters such as locations of the fixed pivots. This leads naturally to a decomposed design space for four-bar mechanism synthesis for approximate motion generation.


Author(s):  
Ahmad Barari

The accurate estimation of the geometric deviations is not possible only by manipulating the Euclidian distances of the discrete measured points from substitute geometry. The real geometric deviations of a measured surface need to be calculated based on the desired tolerance zone of the surface. This fact is usually neglected in common practices in the coordinate metrology of surfaces. The importance of considering the desired tolerance zone in estimation of the optimum deviation zone is demonstrated in this paper. Then a best fit method is presented which complies with the tolerance requirements of the designed surface. The developed fitting methodology constructs a substitute geometry to minimizes the residual deviations corresponding to the given tolerance zone and the needs of down-stream operations that use the results of the inspection process. It is shown how the developed objective function can be adopted for a case of closed-loop manufacturing process, when the under-cut residual deviations of the manufactured part can be corrected by a down-stream operation. In order to validate the proposed methodology, experiments are conducted. The results show a significant reduction of uncertainties in coordinate metrology of geometric surfaces. Implementation of this method directly results in increasing the accuracy of the entire tolerance evaluation process, and less uncertainty in quality control of the manufactured parts.


2021 ◽  
Vol 65 (3) ◽  
pp. 5-16
Author(s):  
Abbas Ja’afaru Badakaya ◽  

This paper concerns with the study of two pursuit differential game problems of many pursuers and many evaders on a nonempty closed convex subset of R^n. Throughout the period of the games, players must stay within the given closed convex set. Players’ laws of motion are defined by certain first order differential equations. Control functions of the pursuers and evaders are subject to geometric constraints. Pursuit is said to be completed if the geometric position of each of the evader coincides with that of a pursuer. We proved two theorems each of which is solution to a problem. Sufficient conditions for the completion of pursuit are provided in each of the theorems. Moreover, we constructed strategies of the pursuers that ensure completion of pursuit.


Sign in / Sign up

Export Citation Format

Share Document