Ocean Wave Energy Harvester With a Novel Power Takeoff Mechanism

Author(s):  
Junxiao Ai ◽  
Hwan Lee ◽  
Changwei Liang ◽  
Lei Zuo

The potential for electricity generation from ocean wave energy in the US is estimated to be 64% of the total electricity generated from all sources in 2010. Over 53% of the US population lives within 50 miles of the coast (NOAA), which means ocean waves offer ready opportunity for harvesting power. This paper will present a details progress of developing an innovative ocean wave energy harvester, with adopting an innovative power takeoff mechanism named mechanical motion rectifier (MMR), which will directly convert the irregular oscillatory wave motion into regular unidirectional rotation of the generator. It marries the advantages of the direct and indirect-drive power takeoff methods, with a much higher energy conversion efficiency and enhanced reliability and compactness. Experiment has been carried out and the results verify that the novel power take-off mechanism improved the performance of wave energy harvester.

2015 ◽  
Vol 76 ◽  
pp. 551-559 ◽  
Author(s):  
Simon C. Parkinson ◽  
Ken Dragoon ◽  
Gordon Reikard ◽  
Gabriel García-Medina ◽  
H. Tuba Özkan-Haller ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-4
Author(s):  
Qin Guodong ◽  
Pang Quanru ◽  
Chen Zhongxian

Ocean wave energy is a high energy density and renewable resource. High power conversion rate is an advantage of linear generators to be the competitive candidates for ocean wave energy extraction system. In this paper, the feasibility of a wave energy extraction system by linear generator has been verified in an experimental flume. Besides, the analytical equations of heaving buoy oscillating in vertical direction are proposed, and the analytical equations are proved conveniently. What is more, the active power output of linear generator of wave energy extraction system in experimental flume is presented. The theoretical analysis and experimental results play a significant role for future wave energy extraction system progress in real ocean waves.


Author(s):  
Zhenwei Liu ◽  
Ran Zhang ◽  
Han Xiao ◽  
Xu Wang

Ocean wave energy conversion as one of the renewable clean energy sources is attracting the research interests of many people. This review introduces different types of power take-off technology of wave energy converters. The main focus is the linear direct drive power take-off devices as they have the advantages for ocean wave energy conversion. The designs and optimizations of power take-off systems of ocean wave energy converters have been studied from reviewing the recently published literature. Also, the simple hydrodynamics of wave energy converters have been reviewed for design optimization of the wave energy converters at specific wave sites. The novel mechanical designs of the power take-off systems have been compared and investigated in order to increase the energy harvesting efficiency.


2021 ◽  
pp. 1-10
Author(s):  
Francisco Arias ◽  
Salvador De Las Heras

Abstract The possibility to convert the ocean wave energy into electrical energy by piezoelectric layers has excited the imagination of ocean wave energy conversion designers for decades owing to its relative robustness (no mechanical parts are needed), the capability to cover large areas and its relative low cost. Unfortunately, the very poor efficiency featured by piezoelectric layers in application of ocean waves has prevented its application even as energy harvester. Here, the possibility to induce hydrocavitation and then working with more higher local pressures for substantial efficiency enhancement is discussed. Utilizing a simplified geometrical and physical model and the linear and potential theory, a first theoretical estimation for the energy enhancement driven by hydrocavitation was calculated. It was found that the power could be enhanced several orders of magnitude which, although still rather low, however, the enhanced electric outputs can be used now as energy harvesters. Additional R&D is encouraged in order to explore the possibilities to harness hydrocavitation to enhance piezoelectric converters.


Author(s):  
Tao Sun ◽  
Jiangbin Zhao ◽  
Xinping Yan ◽  
Pengpeng Xu

To solve the issue of the energy supply for unmanned ocean vehicles, the ocean wave energy as an abundant and widely distributed renewable clean energy, provides a feasible way. This paper proposes a flapping-hydrofoil method applied to unmanned ocean vehicles, harnessing the ocean wave energy to generate power. The structure of the flapping-hydrofoil wave energy harvester is presented, including the internal transmission device and the design of the hydrofoil. Then the operation modes (buoyancy drive and electric drive) and the application prospects (operating on and under the sea surface) of the flapping-hydrofoil wave energy ocean vehicle are also discussed, with the sincere expectations of further development of the ocean science and technology as well as offshore engineering.


2012 ◽  
Vol 37 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Ken Rhinefrank ◽  
Alphonse Schacher ◽  
Joseph Prudell ◽  
Ted K. A. Brekken ◽  
Chad Stillinger ◽  
...  

2017 ◽  
Vol 260 ◽  
pp. 191-197 ◽  
Author(s):  
Won Seop Hwang ◽  
Jung Hwan Ahn ◽  
Se Yeong Jeong ◽  
Hyun Jun Jung ◽  
Seong Kwang Hong ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Safdar Rasool ◽  
Kashem M. Muttaqi ◽  
Danny Sutanto

Ocean wave energy is an abundant and clean source of energy; however, its potential is largely untapped. Although the concept of energy harvesting from ocean waves is antiquated, the advances in wave energy conversion technologies are embryonic. In many major studies related to wave-to-wire technologies, ocean waves are considered to be regular waves with a fixed amplitude and frequency. However, the actual ocean waves are the sum of multiple frequencies that exhibit a particular sea state with a significant wave height and peak period. Therefore, in this paper, detailed modelling of the ocean waves is presented and different wave spectra are analyzed. The wave spectra will eventually be used for the generation of wave elevation time series. Those time series can be used for the wave-to-wire model-based studies for improved investigations into wave energy conversion mechanisms, mimicking the real ocean conditions.


Sign in / Sign up

Export Citation Format

Share Document