Hydrocavitation piezoelectric ocean wave energy harvesting

2021 ◽  
pp. 1-10
Author(s):  
Francisco Arias ◽  
Salvador De Las Heras

Abstract The possibility to convert the ocean wave energy into electrical energy by piezoelectric layers has excited the imagination of ocean wave energy conversion designers for decades owing to its relative robustness (no mechanical parts are needed), the capability to cover large areas and its relative low cost. Unfortunately, the very poor efficiency featured by piezoelectric layers in application of ocean waves has prevented its application even as energy harvester. Here, the possibility to induce hydrocavitation and then working with more higher local pressures for substantial efficiency enhancement is discussed. Utilizing a simplified geometrical and physical model and the linear and potential theory, a first theoretical estimation for the energy enhancement driven by hydrocavitation was calculated. It was found that the power could be enhanced several orders of magnitude which, although still rather low, however, the enhanced electric outputs can be used now as energy harvesters. Additional R&D is encouraged in order to explore the possibilities to harness hydrocavitation to enhance piezoelectric converters.

Ocean waves are huge, large untapped energy resources and the potential for extracting energy from waves is considerable. Ocean wave energy can play a dynamic role for producing electricity as fresh source of renewable energy to the off-grid power connection in remote areas. There are number of research work going across and around the coastlineto generate electrical energy from the ocean waves. Wave energy conversion technologies are important and lead to more research work in future.Wave energy converters converts the mechanical energy obtained from ocean waves to electricity. Researches in this area are driven for the need to meet demand in electricity but it is relatively immature compared to other renewable energy technologies. This proposed paper aims to develop a prototype that can utilize the wave energy to produce electricity. Wave energy generator has been developed and the results are analysed for different specifications of converter and also presented. From the experimental setup it is assured that slowly varying power generation is obtained from ocean wave. This paper also comprises working and main components of the system.


2019 ◽  
Vol 283 ◽  
pp. 05006
Author(s):  
Yongjie Sang ◽  
Bertrand Dubus

A lightweight electromechanical device is studied to harvest energy of ocean waves and supply electrical power to small-size ocean observation equipment such as sonobuoys. It is composed of a magnet fixed to the floating housing which follows the motion of the ocean surface and a moving coil connected to the case via a flexible spring. As the floating housing follows the vertical motion of water surface, a voltage is induced in the coil due to relative velocity between the coil and the magnet, and kinetic energy of the ocean wave is converted into electrical energy. Full bridge rectifying circuit and smoothing capacitor are used to convert AC voltage to constant voltage. Single degree of freedom electromechanical model of the prototype transducer (LGT-4.5 geophone) is developed and simulated with an electrical circuit software to predict energy harvesting performance. Vibration experiments are also performed with a shaker to validate transducer model and quantify output voltage. Parametric analysis is conducted to identify optimal choice of capacitance in terms of maximum stored energy and minimum charging time. This device is simple and small size relative to ocean wavelength compared to classical linear permanent magnetic generator used in offshore power plant. Its power generation per unit weight is compared to larger scale ocean energy converters.


2016 ◽  
Vol 2016 ◽  
pp. 1-4
Author(s):  
Qin Guodong ◽  
Pang Quanru ◽  
Chen Zhongxian

Ocean wave energy is a high energy density and renewable resource. High power conversion rate is an advantage of linear generators to be the competitive candidates for ocean wave energy extraction system. In this paper, the feasibility of a wave energy extraction system by linear generator has been verified in an experimental flume. Besides, the analytical equations of heaving buoy oscillating in vertical direction are proposed, and the analytical equations are proved conveniently. What is more, the active power output of linear generator of wave energy extraction system in experimental flume is presented. The theoretical analysis and experimental results play a significant role for future wave energy extraction system progress in real ocean waves.


Author(s):  
Hidemi Mutsuda ◽  
Ryuta Watanabe ◽  
Masato Hirata ◽  
Yasuaki Doi ◽  
Yoshikazu Tanaka

The purpose of this study is to improve FPED (Flexible PiEzoelectric Device) we have developed. The FPED consisting of piezo-electric polymer film (PVDF) is a way of harvesting electrical energy from ocean power, e.g. tide, current, wave, breaking wave and vortex. We also propose an Elastic Floating unit with HAanging Structures (EFHAS) using FPED. The EFHAS consists of floating unit and hanging unit. In this study, we investigated electric performance of FPED and EFHAS and also modified internal structure of FPED to increase electrical efficiency. As a result, Electric performance is increasing with increasing number of PVDFs laminated in FPED. Multilayer type of FPED can rapidly increase electric efficiency. Electric power can be improved by FPED attached a bluff body with relative density. Electric performance of floating type for floating unit of EFHAS is better than that of submerged type. Distance L/λ = 0.4 between floaters of floating unit is suitable for highly electric performance. In hanging unit of EFHAS, it is possible to increase electric power per unit area with increasing number of stairs. In conclusion, we showed the EFHAS with the FPED could be useful for harvesting ocean wave energy.


2012 ◽  
Vol 622-623 ◽  
pp. 1143-1146
Author(s):  
Cheng Shao ◽  
Xao Yu Yuan

Sea waves are a very promising energy carrier among renewable power sources, and so many devices to convert wave energy into electrical energy have been invented. This paper discussed the fundamentals of ocean wave energy, summarized the wave energy research being conducted. And the purpose is to take refers to scientists and engineers in this area.


2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Safdar Rasool ◽  
Kashem M. Muttaqi ◽  
Danny Sutanto

Ocean wave energy is an abundant and clean source of energy; however, its potential is largely untapped. Although the concept of energy harvesting from ocean waves is antiquated, the advances in wave energy conversion technologies are embryonic. In many major studies related to wave-to-wire technologies, ocean waves are considered to be regular waves with a fixed amplitude and frequency. However, the actual ocean waves are the sum of multiple frequencies that exhibit a particular sea state with a significant wave height and peak period. Therefore, in this paper, detailed modelling of the ocean waves is presented and different wave spectra are analyzed. The wave spectra will eventually be used for the generation of wave elevation time series. Those time series can be used for the wave-to-wire model-based studies for improved investigations into wave energy conversion mechanisms, mimicking the real ocean conditions.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 102
Author(s):  
Juanjuan Wang ◽  
Zhongxian Chen ◽  
Fei Zhang

Ocean wave power generation techniques (converting wave energy into electrical energy) have been in use for many years. The objective of this paper is to review the design, control, efficiency, and safety of ocean wave power generation systems. Several topics are discussed: the current situation of ocean wave power generation system tests in real ocean waves; the optimization design of linear generator for converting ocean wave energy into electrical energy; some optimization control methods to improve the operational efficiency of ocean wave power generation systems; and the current policy and financial support of ocean wave power generation in some countries. Due to the harsh ocean environment, safety is another factor that ocean wave power generation systems will face. Therefore, before the conclusion of this review, a damping coefficient optimization control method based on the domain partition is proposed to improve the efficiency and safety of ocean wave power generation systems.


2019 ◽  
Vol 8 (2) ◽  
pp. 3563-3569

The world we live in is becoming more and more dependent on electrical energy and shortage of energy is bound to happen in the nearest future. India is the third largest in terms of power generation. Global warming and climate changes are the biggest challenge faced by mankind. Use of energy resources which are renewable and green that is producing low carbon emission is the need of the day. India has invested heavily on wind energy and solar energy. Ocean wave energy generation is renewable process with minimal carbon emission as well as less land requirement. India has a long coastline and has a tremendous scope for generation of wave energy along its coastline. Wave Energy Converter (WEC) is the device used in the wave energy extraction. For making the wave energy conversion feasible, the efficiency of a WEC is required to be assessed. For the design of WEC and assessment of its efficiency numerical models are very much useful giving the flexibility of assessing a number of alternatives at a relatively low cost. An attempt is made in this paper to estimate efficiency of an array of WECs using the Boussinesq Wave Model, namely the mathematical model MIKE21-BW. A site at Bhagvati Bandar, which is identified as hotspot for wave energy generation is considered for the installation of WECs. Numerical model experiments were carried out to find optimal configuration of an array of WECs and the findings are presented in this paper.


Author(s):  
Adam Brown ◽  
Robert Paasch ◽  
Irem Y. Tumer ◽  
Pukha Lenee-Bluhm ◽  
Justin Hovland ◽  
...  

Survivability is a term that is widely used in the ocean wave energy industry, but the term has never been defined in that context. The word itself seems to have an intrinsic meaning that people understand; this fact often leads to the term’s misuse and its confusion with “reliability”. In order to design systems that are capable of long term survival in the ocean environment, it must be clear what “survivability” means and how it affects the design process and ultimately the device being deployed. Ocean energy is relatively predictable over the span of months, days, and even hours, which makes it very promising as a form of renewable energy. However, the variation of the energy content of ocean waves in a given location is likely high due to the effect of storms and the seasons. Wave energy converters must be built to be reliable while operating and survivable during severe conditions. Therefore, probabilistic design practices must be used to insure reliability and survivability in conditions that are constantly changing. Reliability is used to numerically express the failures of a device that occur while the system is operational, and it is usually expressed in terms of the mean time between failure (MTBF). However, in the context of ocean wave energy converters, the devices are likely to be continuously deployed in conditions that push them beyond their operating limits. During these times it is likely that wave energy converters will be placed in some sort of “survival mode” where the device sheds excess power, reducing system loading. Survivability is focused specifically on failures that occur during these times, when the device is experiencing conditions that surpass its operational limits. Developing a highly survivable wave energy converter is an outstanding goal, but without a standard definition of the term survivability, progress towards that goal cannot be measured. The purpose of this paper is to provide an initial definition for survivability, and to introduce a simple metric that provides an objective comparison of the survivability of varying wave energy converter technologies.


Sign in / Sign up

Export Citation Format

Share Document