scholarly journals Prediction of Isolated Resonance Curves Using Nonlinear Normal Modes

Author(s):  
R. J. Kuether ◽  
L. Renson ◽  
T. Detroux ◽  
C. Grappasonni ◽  
G. Kerschen ◽  
...  

Isolated resonance curves are separate from the main nonlinear forced-response branch, so they can easily be missed by a continuation algorithm and the resonant response might be underpredicted. The present work explores the connection between these isolated resonances and the nonlinear normal modes of the system and adapts an energy balance criterion to connect the two. This approach provides new insights into the occurrence of isolated resonances as well as a method to find an initial guess to compute the isolated resonance curve using numerical continuation. The concepts are illustrated on a finite element model of a cantilever beam with a nonlinear spring at its tip. This system presents jumps in both frequency and amplitude in its response to a swept sinusoidal excitation. The jumps are found to be the result of a modal interaction that creates an isolated resonance curve that eventually merges with the main resonance branch as the excitation force increases. Excellent insight into the observed dynamics is provided with the NNM theory, which supports that NNMs can also be a useful tool for predicting isolated resonance curves and other behaviors in the damped, forced response.

Author(s):  
Ioannis T. Georgiou

In this work, the nonlinear coupled dynamics of a sandwich structure with hexagonal honeycomb core are characterized in terms of Proper Orthogonal Decomposition modes. A high fidelity nonlinear finite element model is derived to describe geometric nonlinearity and displacement and rotation fields that govern the coupled dynamics. Contrary to equivalent continuum models used to predict vibration properties of lattice and sandwich structures, a high fidelity finite element model allows for a quite detailed description of the distributed complicated geometric nonlinearity of the core. It was found that the free dynamics excited by a blast load and the forced dynamics excited by a harmonic force posses POD modes which are localized in space and time. The processing of the simulated dynamics by the Time Discrete Proper Transform forms a means to study the nonlinear coupled dynamics of sandwich structures in the context of nonlinear normal modes of vibration and reduced order models.


2019 ◽  
Vol 23 (7) ◽  
pp. 1305-1321
Author(s):  
Yildirim Serhat Erdogan

Linear and nonlinear normal mode motions may provide promising information about the condition of mechanical structures under small and large amplitude vibrations, respectively. In this view, this study investigates the nonlinear dynamics of cracked beams through use of the nonlinear mode motion and extends the crack identification methods that utilize the linear characteristics to nonlinear vibrating structures. At first, the nonlinear normal modes of the intact and cracked beams are calculated by a continuation algorithm. A finite element model of a geometrically nonlinear prismatic beam was created based on crack stress intensity. Subsequently, a method based on normal mode motion and minimization of strain energy, which is valid for linear and nonlinear vibrating beams, was developed as an optimization problem. To this end, hybrid optimization was also used due to its capability in finding global minimum along with its computational efficiency. It was shown that the proposed crack detection technique is applicable to beams vibrating in linear and/or nonlinear regimes and well capable of detecting both crack location and severity.


2015 ◽  
Vol 351 ◽  
pp. 299-310 ◽  
Author(s):  
R.J. Kuether ◽  
L. Renson ◽  
T. Detroux ◽  
C. Grappasonni ◽  
G. Kerschen ◽  
...  

Author(s):  
R. Viguié ◽  
M. Peeters ◽  
G. Kerschen ◽  
J.-C. Golinval

The dynamics of a two-degree-of-freedom nonlinear system consisting of a grounded Duffing oscillator coupled to an essentially nonlinear attachment is examined in the present study. The underlying Hamiltonian system is first considered, and its nonlinear normal modes are computed using numerical continuation and gathered in a frequency-energy plot. Based on these results, the damped system is then considered, and the basic mechanisms for energy transfer and dissipation are analyzed.


Author(s):  
Ioannis Georgiou ◽  
Dimitris Servis

A novel and systematic way is presented to characterize the modal structure of the free dynamics of three-dimensional elastic continua. In particular, the method of Proper Orthogonal Decomposition (POD) for multi-field dynamics is applied to analyze the dynamics of prisms and moderately thick beams. A nonlinear finite element model is used to compute accurate approximations to free motions which in turn are processed by POD. The extension of POD to analyze the dynamics of three-dimensional elastic continua, which are multi-field coupled dynamical system, is carried out by vector and matrix quantization of the finite element dynamics. An important outcome of this study is the fact that POD provides the means to systematically identify the shapes of nonlinear normal modes of vibration of three-dimensional structures from high resolution finite element simulations.


Author(s):  
M. Peeters ◽  
G. Kerschen ◽  
J. C. Golinval ◽  
C. Stephan

The objective of this paper is to demonstrate that the numerical computation of the nonlinear normal modes (NNMs) of complex real-world structures is now within reach. The application considered in this study is the airframe of the Morane-Saulnier Paris aircraft, whose ground vibration tests have exhibited some nonlinear structural behaviors. The finite element model of this aircraft, elaborated from drawings, has more than 80000 degrees of freedom, and softening nonlinearities exist in the connection between the external fuel tanks and the wing tips. From this model, a reduced-order model, which is accurate in the [0–100Hz] range, is constructed using the Craig-Bampton technique. The NNMs of the reduced model are then computed using a numerical algorithm combining shooting and pseudo-arclength continuation. The results show that the NNMs of this full-scale structure can be computed accurately even in strongly nonlinear regimes and with a reasonable computational burden. Nonlinear modal interactions are also highlighted by the algorithm and are discussed.


Author(s):  
Robert J. Kuether ◽  
Matthew S. Allen

Many structures can behave nonlinearly, exhibiting behavior that is not captured by linear vibration theory such as localization and frequency-energy dependence. The nonlinear normal mode (NNM) concept, developed over the last few decades, can be quite helpful in characterizing a structure’s nonlinear response. In the definition of interest, an NNM is a periodic solution to the conservative nonlinear equations of motion. Several approaches have been suggested for computing NNMs and some have been quite successful even for systems with hundreds of degrees of freedom. However, existing methods are still too expensive to employ on realistic nonlinear finite element models, especially when the Jacobian of the equations of motion is not available analytically. This work presents a new approach for numerically calculating nonlinear normal modes by combining force appropriation, numerical integration and continuation techniques. This method does not require gradients, is found to compute the NNMs accurately up to moderate response amplitudes, and could be readily extended to experimentally characterize nonlinear structures. The method is demonstrated on a nonlinear mass-spring-damper system, computing its NNMs up to a 35% shift in frequency. The results are compared with those from a gradient based algorithm and the relative merits of each method are discussed.


Author(s):  
Yekai Sun ◽  
Jie Yuan ◽  
Alessandra Vizzaccaro ◽  
Loïc Salles

AbstractThe nonlinear modes of a non-conservative nonlinear system are sometimes referred to as damped nonlinear normal modes (dNNMs). Because of the non-conservative characteristics, the dNNMs are no longer periodic. To compute non-periodic dNNMs using classic methods for periodic problems, two concepts have been developed in the last two decades: complex nonlinear mode (CNM) and extended periodic motion concept (EPMC). A critical assessment of these two concepts applied to different types of non-conservative nonlinearities and industrial full-scale structures has not been thoroughly investigated yet. Furthermore, there exist two emerging techniques which aim at predicting the resonant solutions of a nonlinear forced response using the dNNMs: extended energy balance method (E-EBM) and nonlinear modal synthesis (NMS). A detailed assessment between these two techniques has been rarely attempted in the literature. Therefore, in this work, a comprehensive comparison between CNM and EPMC is provided through two illustrative systems and one engineering application. The EPMC with an alternative damping assumption is also derived and compared with the original EPMC and CNM. The advantages and limitations of the CNM and EPMC are critically discussed. In addition, the resonant solutions are predicted based on the dNNMs using both E-EBM and NMS. The accuracies of the predicted resonances are also discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document