Full-Field Strain Monitoring of a Wind Turbine Using Very Limited Set of Displacements Measured With Three-Dimensional Point Tracking

Author(s):  
Javad Baqersad ◽  
Peyman Poozesh ◽  
Christopher Niezrecki ◽  
Peter Avitabile

In the current work, the optical three-dimensional point-tracking (3DPT) measurement approach is used in conjunction with a recently developed modal expansion technique. These two approaches (empirical and analytical) complement each other and enable the prediction of the full-field dynamic response on the surface of the structure as well as within the interior points. The practical merit of the approach was verified using a non-spinning and spinning wind turbine rotor. The three-bladed wind turbine rotator was subjected to different loading scenarios and the displacement of optical targets located on the blades was measured using 3DPT. The measured displacement was expanded and applied to the finite element model of the turbine to extract full-field strain on the turbine. The sensitivity of the proposed approach to the number of optical targets was studied in this paper. It is shown the approach can accurately predict the strain even with very few set of measurement points.

2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Javad Baqersad ◽  
Peyman Poozesh ◽  
Christopher Niezrecki ◽  
Peter Avitabile

The three-dimensional point-tracking (3DPT) measurement approach is used in conjunction with finite element (FE) method and modal expansion technique to predict full-field dynamic response on a rotating structure. A rotating three-bladed wind turbine rotor was subjected to different loading scenarios, and the displacement of optical targets located on the blades was measured using 3DPT. The out-of-plane measured displacement of the targets was expanded and applied to the FE model of the turbine to extract full-field strain on the turbine. The sensitivity of the proposed approach to the number of optical targets was also studied in this paper. The results show that the dynamic strain on a structure can be extracted with a very limited set of measurement points (optical targets) placed on appropriate locations on the blades. It was shown that the proposed technique is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a noncontacting measurement approach, it can be readily applied to a variety of structures having different boundary conditions.


2006 ◽  
Vol 128 (4) ◽  
pp. 432-444 ◽  
Author(s):  
Chanin Tongchitpakdee ◽  
Sarun Benjanirat ◽  
Lakshmi N. Sankar

The aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing-edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Experimental data for the baseline case is used to validate the flow solver, prior to its use in exploring these concepts. Calculations have been performed for axial and yawed flow at several wind conditions. Results presented include radial distribution of the normal and tangential forces, shaft torque, root flap moment, and surface pressure distributions at selected radial locations. At low wind speed (7m∕s) where the flow is fully attached, it is shown that a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients (Cμ⩽0.075). A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to Coanda jet. At high wind speed (15m∕s) where the flow is separated, both the Coanda jet and Gurney flap become ineffective. The effects of these two concepts on the root bending moments have also been studied.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3530
Author(s):  
Xu Liu ◽  
Rongsheng Lu

The testing of the mechanical properties of materials on a small scale is difficult because of the small specimen size and the difficulty of measuring the full-field strain. To tackle this problem, a testing system for investigating the mechanical properties of small-scale specimens based on the three-dimensional (3D) microscopic digital image correlation (DIC) combined with a micro tensile machine is proposed. Firstly, the testing system is described in detail, including the design of the micro tensile machine and the 3D microscopic DIC method. Then, the effects of different shape functions on the matching accuracy obtained by the inverse compositional Gauss–Newton (IC-GN) algorithm are investigated and the numerical experiment results verify that the error due to under matched shape functions is far larger than that of overmatched shape functions. The reprojection error is shown to be smaller than before when employing the modified iteratively weighted radial alignment constraint method. Both displacement and uniaxial measurements were performed to demonstrate the 3D microscopic DIC method and the testing system built. The experimental results confirm that the testing system built can accurately measure the full-field strain and mechanical properties of small-scale specimens.


Author(s):  
David J. Malcolm ◽  
Daniel L. Laird

A procedure has been developed and tested to derive a set of one-dimensional beam properties that will duplicate the behavior of a full three-dimensional finite element model of a wind turbine blade. This allows the full features of a detailed model to be transferred to an aeroelastic code for dynamic simulation of the complete wind turbine. The process uses the NuMAD interface to generate an ANSYS® finite element model to which a set of six unit loads are applied at the tip. The displacement results are used in a series of MATLAB routines to extract the stiffness matrices of the desired beam elements. Tests have been carried out on a number of blades and the stiffness matrices incorporated into ADAMS® models of the blades and complete wind turbines.


Sign in / Sign up

Export Citation Format

Share Document