A Goal Oriented, Sequential Process Design of a Multi-Stage Hot Rod Rolling System

Author(s):  
Anand Balu Nellippallil ◽  
Kevin N. Song ◽  
Chung-Hyun Goh ◽  
Pramod Zagade ◽  
B. P. Gautham ◽  
...  

The steel manufacturing process is characterized by the requirement of expeditious development of high quality products at low cost through effective and judicious use of available resources. Identifying solutions that meet the conflicting commercially imperative goals of such process chains is hard using traditional search techniques. The complexity embedded in such a problem increases due to the presence of large number of design variables, constraints and bounds, conflicting goals and the complex sequential relationships of the different stages of manufacturing. A classic example of such a manufacturing problem is the design of a rolling system for manufacturing a steel rod. This is a sequential process in which information flows from first rolling stage/pass to last rolling pass and the decisions made at first pass influence the decisions that are made at the later passes. In this paper, we present a method based on well-established empirical models and response surface models developed through simulation experiments (finite element based) along with the compromise Decision Support Problem (cDSP) construct to support integrated information flow across different stages of a multi-stage hot rod rolling system. The method is goal-oriented because the design decisions are first made based on the end requirements identified for the process at the last rolling pass and these decisions are then passed to rolling passes that precede following the sequential order in an inverse manner to design the entire rolling process chain. We illustrate the efficacy of the method by carrying out the design of a multi-stage rolling system. We formulate the cDSP for the second and fourth pass of a four pass rolling chain. The stages are designed by sequentially passing the design information obtained after exercising the cDSP for the last pass for different scenarios and identifying the best combination of design variables that satisfies the conflicting goals. The cDSP for second pass helps in integrated information flow from fourth to first pass and in meeting specified goals imposed by the fourth and third pass designed. The end goals identified for this problem for fourth pass are minimization of ovality (quality) of rod, maximization of throughput (productivity) and minimization of rolling load (performance and cost). The method can be instantiated for other multi-stage manufacturing processes such as the steel making process chain having several unit operations. In future, we plan to use the method for supporting decision workflow in steel making process by formulating cDSPs for the multiple unit operations involved and linking them as a decision network using coupled cDSPs.

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Anand Balu Nellippallil ◽  
Kevin N. Song ◽  
Chung-Hyun Goh ◽  
Pramod Zagade ◽  
B. P. Gautham ◽  
...  

The steel manufacturing process is characterized by the requirement of expeditious development of high quality products at low cost through the effective use of available resources. Identifying solutions that meet the conflicting commercially imperative goals of such process chains is hard using traditional search techniques. The complexity in such a problem increases due to the presence of a large number of design variables, constraints and bounds, conflicting goals and the complex sequential relationships of the different stages of manufacturing. A classic example of such a manufacturing problem is the design of a rolling system for manufacturing a steel rod. This is a sequential process in which information flows from first rolling stage/pass to the last rolling pass and the decisions made at first pass influence the decisions that are made at the later passes. In this context, we define horizontal integration as the facilitation of information flow from one stage to another thereby establishing the integration of manufacturing stages to realize the end product. In this paper, we present an inverse design method based on well-established empirical models and response surface models developed through simulation experiments (finite-element based) along with the compromise decision support problem (cDSP) construct to support integrated information flow across different stages of a multistage hot rod rolling system. The method is goal-oriented because the design decisions are first made based on the end requirements identified for the process at the last rolling pass and these decisions are then passed to the preceding rolling passes following the sequential order in an inverse manner to design the entire rolling process chain to achieve the horizontal integration of stages. We illustrate the efficacy of the method by carrying out the design of a multistage rolling system. We formulate the cDSP for the second and fourth pass of a four pass rolling chain. The stages are designed by sequentially passing the design information obtained after exercising the cDSP for the last pass for different scenarios and identifying the best combination of design variables that satisfies the conflicting goals. The cDSP for the second pass helps in integrated information flow from fourth to first pass and in meeting specified goals imposed by the fourth and third passes. The end goals identified for this problem for the fourth pass are minimization of ovality (quality) of rod, maximization of throughput (productivity), and minimization of rolling load (performance and cost). The method can be instantiated for other multistage manufacturing processes such as the steel making process chain having several unit operations.


Author(s):  
Anand Balu Nellippallil ◽  
Vignesh Rangaraj ◽  
B. P. Gautham ◽  
Amarendra Kumar Singh ◽  
Janet K. Allen ◽  
...  

Reducing the manufacturing and marketing time of products by means of integrated simulation-based design and development of the material, product, and the associated manufacturing processes is the need of the hour for industry. This requires the design of materials to targeted performance goals through bottom-up and top-down modeling and simulation practices that enables handshakes between modelers and designers along the entire product realization process. Manufacturing a product involves a host of unit operations and the final properties of the manufactured product depends on the processing steps carried out at each of these unit operations. In order to effectively couple the material processing-structure-property-performance spaces, there needs to be an interplay of the systems-based design of materials with enhancement of models of various unit operations through multiscale modeling methodologies and integration of these models at different length scales (vertical integration). This ensures the flow of information from one unit operation to another thereby establishing the integration of manufacturing processes (horizontal integration). Together these types of integration will support the decision-based design of the manufacturing process chain so as to realize the end product. In this paper, we present a goal-oriented, inverse decision-based design method to achieve the vertical and horizontal integration of models for the hot rolling and cooling stages of the steel manufacturing process chain for the production of a rod with defined properties. The primary mathematical construct used for the method presented is the compromise Decision Support Problem (cDSP) supported by the proposed Concept Exploration Framework (CEF) to generate satisficing solutions under uncertainty. The efficacy of the method is illustrated by exploring the design space for the microstructure after cooling that satisfies the requirements identified by the end mechanical properties of the product. The design decisions made are then communicated in an inverse manner to carry out the design exploration of the cooling stage to identify the design set points for cooling that satisfies the new target microstructure requirements identified. Specific requirements such as managing the banded microstructure to minimize distortion in forged gear blanks are considered in the problem. The proposed method is generic and we plan to extend the work by carrying out the integrated decision-based design exploration of rolling and reheating stages that precede to realize the end product.


2018 ◽  
Vol 108 (01-02) ◽  
pp. 41-46
Author(s):  
F. Vogel ◽  
M. Tiffe ◽  
M. Metzger ◽  
D. Prof. Biermann

Bei der Auslegung verknüpfter Prozessschritte zur Herstellung von Bauteilen mit gezielt eingestellten Eigenschaften finden vermehrt FE-basierte Simulationssysteme Anwendung, um den Aufwand experimenteller Untersuchungen insbesondere im Hinblick auf den gesteigerten Einsatz innovativer Werkstoffkonzepte gering zu halten. Im Folgenden wird die Ausarbeitung von Konzepten zur Anpassung von Parametern zur Materialmodellierung sowie zur Verknüpfung von Einzelsimulationen der Prozesskette erläutert.   Regarding the increased application of innovative material concepts in sequential process steps for manufacturing components with tailored properties, the FE-analysis can be used to reduce the effort of experimental investigations. In this article, the development of concepts for the adjustment of simulation model parameters and the conjunction of process chain single simulations are described.


Author(s):  
Philipp Amtsfeld ◽  
Michael Lockan ◽  
Dieter Bestle ◽  
Marcus Meyer

State-of-the-art aerodynamic blade design processes mainly consist of two phases: optimal design of 2D blade sections and then stacking them optimally along a three-dimensional stacking line. Such a quasi-3D approach, however, misses the potential of finding optimal blade designs especially in the presence of strong 3D flow effects. Therefore, in this paper a blade optimization process is demonstrated which uses an integral 3D blade model and 3D CFD analysis to account for three-dimensional flow features. Special emphasis is put on shortening design iterations and reducing design costs in order to obtain a rapid automatic optimization process for fully 3D aerodynamic turbine blade design which can be applied in an early design phase already. The three-dimensional parametric blade model is determined by up to 80 design variables. At first, the most important design parameters are chosen based on a non-linear sensitivity analysis. The objective of the subsequent optimization process is to maximize isentropic efficiency while fulfilling a minimal set of constraints. The CFD model contains both important geometric features like tip gaps and fillets, and cooling and leakage flows to sufficiently represent real flow conditions. Two acceleration strategies are used to cut down the turn-around time from weeks to days. Firstly, the aerodynamic multi-stage design evaluation is significantly accelerated with a GPU-based RANS solver running on a multi-GPU workstation. Secondly, a response surface method is used to reduce the number of expensive function evaluations during the optimization process. The feasibility is demonstrated by an application to a blade which is a part of a research rig similar to the high pressure turbine of a small civil jet engine. The proposed approach enables an automatic aerodynamic design of this 3D blade on a single workstation within few days.


2019 ◽  
Vol 8 (1) ◽  
pp. 39-46
Author(s):  
Suryadi ◽  
Amin Suhadi ◽  
Dedi Priadi ◽  
E. S. Siradj

Telah dilakukan percobaan severe plastic deformation (SPD) dengan metodeequal channel angular pressing (ECAP) pada batang kuningan CuZn 70/30 diameter 10 mm sampai 5 pas. Gaya penekanan meningkat secara signifikan pada awal langkah penekanan dan mencapai nilai maksimum lalu melandai. Pada pas pertama gaya penekanan mencapai 115 kN, pas kedua 130 kN, pas ketiga mecapai 150 kN dan pada pas keempat 165 kN. Dari pengukuran luas area di bawah kurva gaya penekanan diperoleh energi total pembentukan pada proses ECAP batang kuningan persatuan panjang adalah 95 Joule/mm pada pas pertama, sampai 130 Joule/mm pada pas ketiga, dan turun 125 Juole/mm pada pas keempat. Secara kumulatif total energi persatuan panjang meningkat secara linier sesuai dengan peningkatan jumpah pas, dimana pada pas keempat mencapai 597 MPa. Peningkatan gaya penekanan dan energi penekanan sebanding dengan terjadinya peningkatan kekerasan pada batang kuningan dan terjadinya penghalusan butir.Kata kunci: ECAP, gaya penekanan, energi pembentukan, kekerasan, penghalusan butir, kuningan.AbstractExperiments of severe plastic deformation (SPD) have been carried out by the method of equal channel angular pressing (ECAP) on brass rods CuZn 70/30 diameter 10 mm to 5 pas. Pressing force significantly is increased emphasis on early steps and reaches a maximum value and then ramp. At the first pas the pressing force reached 115 kN, the second pass 130 kN, the third pass 150 kN and fouth pass is 165. From measurements of the area under the curve of pressing force, the total forming energy per unit length generated to form the brass rod in ECAP is 95 Joule / mm at the first pass, 130 Joules / mm at third pass and down to 125 Joule/mm at fouth pass. Cumulatively, the total forming energy per unit length increases linearly according to the increase in number of ECAP pass, where the fourth pass reach 597 Joule/mm. Increased emphasis pressing load and forming energy is proportional to the increase in hardness of the brass rod and the grain refinement.Keywords: ECAP, pressing load, forming energy, hardness, grain refinement, Brass


Author(s):  
Yanbiao Feng ◽  
Wenming Zhang ◽  
Jue Yang ◽  
Zuomin Dong

Abstract The multi-stage reducer, especially the planetary gear reducer, usually serves in heavy-duty machinery such as shield tunneling machine, tracked excavator, mining truck and crusher. Those application areas require great load capacity, long life, and high geometrical mechanical performance, and the high ratio so on. This paper first presents a novel architecture of three-stage reducer. To achieve those objectives collectively, this paper presents an optimization methodology based on genetic algorithm (GA). The geometrical volume is set as objective function. The gear module, teeth number, and gear face width are chosen as design variables, taking the life, geometrical spacing, efficiency and load capacity, etc. as constraints. The optimization results are satisfactory and can help designer to employ novel architecture by fulfilling requirements.


Author(s):  
Benjamin Walther ◽  
Siva Nadarajah

This paper introduces a multi-point design capability to discrete adjoint-based aerodynamic shape optimization for multi-stage turbomachines. The developed optimization framework allows to improve a compressor or turbine design not only for a certain operating point, but enables the inclusion of additional off-design operation points, therefore guaranteeing a robust design and annihilating the risk of improving the configuration for a specific design point while deteriorating the overall operability of the turbomachine. To keep the computational cost to a minimum, at every design cycle the flow and adjoint solutions are first calculated and stored for each operating point. This approach ensures that the subsequent finite-difference approximation of the residual sensitivity with respect to the design variables is obtained at a cost nearly independent of the number of investigated operating points. The objective function gradient is then assembled as a weighted sum of the sensitivities calculated for the different operating points. The developed multi-point optimization method is applied to a single-stage transonic compressor and both the back pressure and the rotor wheel speed are varied to investigate the use of adjoint-based design methods to efficiently explore robust turbomachinery designs.


2011 ◽  
Vol 211-212 ◽  
pp. 195-199 ◽  
Author(s):  
Bin Huang ◽  
Ke Xing ◽  
Kazem Abhary ◽  
Sead Spuzic

The primary purpose of this study is to develop a genetic algorithm based computer-aided roll pass optimal design (CAROD) system to support the generalized roll pass design for rod rolling, where the final products are round bars with different sizes. The system was developed to minimize the number of roll passes, decrease the trails and errors in industry, as well as extend the work range of multi-pass rolling systems for rod rolling. Parametric equations were established for geometrical modeling and graphic plotting, which can realize to the parametric transformation for roll pass design and optimization. A methodology based on a hybrid model was proposed to choose passes with different profiles for the multi-pass rod rolling system. In addition, an improved genetic algorithm (IGA) was employed for the optimization of roll passes. A MATLAB program was designed to achieve all these objectives. To reduce the complexity and computational burden of the software, some reliable empirical formulas were applied in this system. Finally, the proposed approach has been applied in a rod rolling system; through simulation and comparison of results against analytical solutions, numerical analysis and experimental data presented by other researchers, it was found that this system is reliable, effective and easier to use.


Sign in / Sign up

Export Citation Format

Share Document