Performance Assessment of Gear Condition Indicators in Detecting Progressive Gear Tooth Crack

Author(s):  
Yang Luo ◽  
Natalie Baddour ◽  
Ming Liang

Gear condition indicators are one of the most important gear transmission fault detection and diagnosis techniques. Various kinds of condition indicators for different kinds of gear fault types (e.g. tooth crack, wear, eccentricity, etc.) have been proposed in the past several decades. However, their relative effectiveness, especially in light of some newly proposed indicators, on gear fault detection or diagnosis has not been fully evaluated. Performance assessment of gear fault condition indicators is not only helpful in designing new advanced indicators but also important for the development of a reliable Condition Based Maintenance (CBM) system. The objective of this paper is to verify and compare the relative performances of twenty-one selected gear condition indicators as applied to a progressive gear tooth crack under constant load and speed working conditions. The main goals are to identify which indicators are sensitive to the fault or have the capability to detect the initial tooth crack and therefore to recommend the most effective gear condition indicators. Dynamic simulations were used to generate the vibration signals which reflect the real underlying vibration behavior of the transmission system. Based on the simulated results, the performances of the selected indicators under noise-free as well as various signal to noise ratio conditions were evaluated and compared. Results indicate that many of the selected indicators are effective for the detection of the progressive tooth crack only under noise-free conditions, and the indicators that only consider time or frequency domain features, such as RMS, Kurtosis, energy ratio, sideband index, are generally less able to detect a tooth crack at an early stage compared to the methods based on reconstructed signals, such as the NA4, FM4, M6A, M8A.

2019 ◽  
Vol 255 ◽  
pp. 06001 ◽  
Author(s):  
Cheng Yew Leong

Air-conditioning systems consumed the most energy usage nearly 45% of the total energy used in commercial-building. Where AHU is one of the most extensively operated equipment and this device is typical customize and complex which can results in hardwire failure and controller errors. The efficiency of the system is very much depending on the proper functioning of sensors. Faults arising from the sensors and control systems are a major contribution to the energy wastage. As such faults often go unnoticed for extended periods of time until the deterioration in performance becomes great enough to trigger comfort complaints or total equipment failure. Energy could be reduced if those faults can be detected and identified at early stage. This paper aims to review of various existing automated fault detection and diagnosis (AFDD) methods for an Air Handling Unit. The background of AHU system, general fault detection and diagnosis framework and typical faults in AHU is described. Comparison and evaluation of the various methodologies will be reviewed in this paper. This comparative study also reveals the strengths and weaknesses of the different approaches. The important role of fault diagnosis in the broader context of air- conditioning is also outlined. By identifying and diagnosing faults to be repaired, these techniques can benefits building owners by reducing energy consumption, improving indoor air quality and operations and maintenance.


2018 ◽  
Vol 24 (1) ◽  
pp. 101-118 ◽  
Author(s):  
Chris K. Mechefske ◽  
David Benjamin Rapos ◽  
Markus Timusk

Purpose The purpose of this paper is to report the findings of a study that used measurements of shaft relative rotational position, made using inexpensive Hall Effect sensors and magnets mounted at the ends of a gearbox input and output shafts, to determine gear “transmission variance.” The transmission variance signals, as a function of gear/shaft rotational position, were then used to detect and diagnose gear faults. Design/methodology/approach Two sets of spur gears (one plastic and one steel) were used to experimentally determine the relative shaft rotational position between the input and the output gearbox shafts. Fault-free and faulted (damaged tooth faces and cracked tooth bases) gears were used to collect representative dynamic signals. Signal processing was used to extract transmission variance values as a function of shaft rotational position and then used to detect and diagnose gear faults. Findings The results show that variations in the relative rotational position of the output shaft relative to that of the input shaft (the transmission variance) can be used to reveal gear mesh characteristics, including faults, such as cracked or missing gear teeth and flattened gear tooth faces, in both plastic gears and steel gears under appropriate (realistic) loads and speeds. Research limitations/implications The operational mode of the non-contact rotational position sensors and the dynamic accuracy limitations are explained along with the basic signal processing required to extract transmission variance values. Practical implications The results show that shaft rotational position measurements can be made accurately and precisely using relatively inexpensive sensors and can subsequently reveal gear faults. Social implications The inexpensive and yet trustworthy fault detection methodology developed in this work should help to improve the efficiency of maintenance actions on gearboxes and, therefore, improve the overall industrial efficiency of society. Originality/value The method described has distinct advantages over traditional analysis methods based on gearbox vibration and/or oil analysis.


2007 ◽  
Vol 345-346 ◽  
pp. 1303-1306
Author(s):  
Bum Won Bae ◽  
In Pil Kang ◽  
Yeon Sun Choi

A fault diagnosis method based on wavelet and adaptive interference canceling is presented for the identification of a damaged gear tooth. A damaged tooth of a certain gear chain generates impulsive signals that could be informative to fault detections. Many publications are available not only for the impulsive vibration signal analysis but the application of signal processing techniques to the impulsive signal detections. However, most of the studies about the gear fault detection using the impulsive vibration signals of a driving gear chain are limited to the verification of damage existence on a gear pair. Requirements for more advanced method locating damaged tooth in a driving gear chain should be a motivation of further studies. In this work an adaptive interference canceling combined with wavelet method is used for a successful identification of the damaged tooth location. An application of the wavelet technique provides a superior resolution for the damage detection to the traditional frequency spectrum based methods. An analysis and experiment with three pair gear chain show the feasibility of this study yielding a precise location of the damaged gear tooth.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8163
Author(s):  
Wunna Tun ◽  
Johnny Kwok-Wai Wong ◽  
Sai-Ho Ling

The malfunctioning of the heating, ventilating, and air conditioning (HVAC) system is considered to be one of the main challenges in modern buildings. Due to the complexity of the building management system (BMS) with operational data input from a large number of sensors used in HVAC system, the faults can be very difficult to detect in the early stage. While numerous fault detection and diagnosis (FDD) methods with the use of statistical modeling and machine learning have revealed prominent results in recent years, early detection remains a challenging task since many current approaches are unfeasible for diagnosing some HVAC faults and have accuracy performance issues. In view of this, this study presents a novel hybrid FDD approach by combining random forest (RF) and support vector machine (SVM) classifiers for the application of FDD for the HVAC system. Experimental results demonstrate that our proposed hybrid random forest–support vector machine (HRF–SVM) outperforms other methods with higher prediction accuracy (98%), despite that the fault symptoms were insignificant. Furthermore, the proposed framework can reduce the significant number of sensors required and work well with the small number of faulty training data samples available in real-world applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
S. H. Gawande ◽  
L. G. Navale ◽  
M. R. Nandgaonkar ◽  
D. S. Butala ◽  
S. Kunamalla

Early fault detection and diagnosis for medium-speed diesel engines are important to ensure reliable operation throughout the course of their service. This work presents an investigation of the diesel engine combustion-related fault detection capability of crankshaft torsional vibrations. Proposed methodology state the way of early fault detection in the operating six-cylinder diesel engine. The model of six cylinders DI Diesel engine is developed appropriately. As per the earlier work by the same author the torsional vibration amplitudes are used to superimpose the mass and gas torque. Further mass and gas torque analysis is used to detect fault in the operating engine. The DFT of the measured crankshaft’s speed, under steady-state operating conditions at constant load shows significant variation of the amplitude of the lowest major harmonic order. This is valid both for uniform operating and faulty conditions and the lowest harmonic orders may be used to correlate its amplitude to the gas pressure torque and mass torque for a given engine. The amplitudes of the lowest harmonic orders (0.5, 1, and 1.5) of the gas pressure torque and mass torque are used to map the fault. A method capable to detect faulty cylinder of operating Kirloskar diesel engine of SL90 Engine-SL8800TA type is developed, based on the phases of the lowest three harmonic orders.


Author(s):  
Z Zhang ◽  
M Entezami ◽  
E Stewart ◽  
C Roberts

This paper introduces a new signal processing algorithm for vibration-based fault detection and diagnosis of roller bearings. The methodology proposed in this paper is based on the combination of two data-adaptive techniques which are further enhanced through the use of an automatic feature identification mechanism. The new technique, introduced as empirical mode envelope with minimum entropy, combines elements from the empirical mode decomposition (EMD) and minimum entropy deconvolution (MED) approaches with an energy moment technique to improve the feature selection stage of the EMD algorithm. This improvement allows the processing chain to identify early stage roller bearing faults in noisier signals. The energy moment technique is used to automatically identify the most appropriate intrinsic mode function from the EMD process prior to the MED algorithm being applied. This is in contrast to conventional approaches which tend to use the first mode or make selections based on traditional energy techniques. The combination of the adaptive techniques of EMD and MED allows the development of an improved technique for fault detection and diagnosis of signals. Combining these techniques with the energy moment approach allows further improved fault detection in complex non-stationary conditions. The processing chain has been tested using data obtained during laboratory testing. From the experimental results, it is shown that the new technique is capable of the detection of early stage (minor) roller and outer race defects found in tapered-roller-bearings rotating at a variety of speeds and noise scenarios.


Sign in / Sign up

Export Citation Format

Share Document