Passive Vibration Control of Roller Batteries in Cableways

Author(s):  
Biagio Carboni ◽  
Andrea Arena ◽  
Walter Lacarbonara

A passive vibration control strategy to mitigate the accelerations of roller batteries in cableways caused by the vehicle transit is investigated. The vibration control strategy makes use of a group of Tuned Mass Dampers (TMDs) placed in different positions along the roller battery. When the frequencies of the TMDs are properly tuned to the modes to control, the energy provided by the dynamic forcing to the roller battery is transferred as kinetic energy to the TMDs. This work investigates the effectiveness of an array of linear TMDs in comparison with the performance of hysteretic TMDs that exploit the restoring forces provided by an assembly of wire ropes. First a dynamical characterization of the roller battery (modal analysis) is carried out. Then an optimization of the assembly of linear TMDs against skew-symmetric harmonic excitations is achieved by means of the Differential Evolution algorithm (DE). Subsequently, the performance of the linear TMDs assembly against the vehicle transit across the tower is assessed. Finally the performance of a network of hysteretic TMDs is studied together with practical feasibility considerations.

Author(s):  
Sara Ying Zhang ◽  
Jason Zheng Jiang ◽  
Simon A. Neild

Linear passive vibration absorbers, such as tuned mass dampers, often contain springs, dampers and masses, although recently there has been a growing trend to employ or supplement the mass elements with inerters. When considering possible configurations with these elements broadly, two approaches are normally used: one structure-based and one immittance-based. Both approaches have their advantages and disadvantages. In this paper, a new approach is proposed: the structure–immittance approach. Using this approach, a full set of possible series–parallel networks with predetermined numbers of each element type can be represented by structural immittances, obtained via a proposed general formulation process. Using the structural immittances, both the ability to investigate a class of absorber possibilities together (advantage of the immittance-based approach), and the ability to control the complexity, topology and element values in resulting absorber configurations (advantages of the structure-based approach) are provided at the same time. The advantages of the proposed approach are demonstrated through two case studies on building vibration suppression and automotive suspension design, respectively.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881675
Author(s):  
Cong Cong

This article is devoted to the study of the vibration control for blades and tower in a wind turbine. Based on the Euler–Lagrangian method, a multi-body dynamic model including three blades with distributed parameter, tower, and their coupling is obtained. Multi active tuned mass dampers have been utilizing as damping devices. Therefore, the dynamics of the tuned mass dampers are also considered in modeling. The influence of extreme wind, and grid dynamics on the vibration of the blade was analyzed. Moreover, the nonlinearity induced by space constraints, which impact on vibration control, is introduced. For active control, the constrained decentralized control strategy is designed via linear matrix inequality which tuned mass dampers stroke constraints are modeled as hard constraints. A doubly fed induction generator connected to an infinite bus including the detailed electrical and structural model was performed on MATLAB/Simulink. Simulation results show that the control strategy can effectively reduce the vibration of the blade while the damper stroke satisfies the working space permitted by the blade. Investigations demonstrate promising results for decentralized constrained control in simultaneous control blade vibrations and tower vibrations. Each actuator is driven separately from the output of the corresponding sensor so that only local feedback control is achieved; this improves the system reliability.


Author(s):  
Adailton Gomes Pereira ◽  
Maria Carolina Barcellos de Oliveira ◽  
Sidney Bruce Shiki ◽  
Armando Ítalo Sette Antonialli

2021 ◽  
Vol 147 (8) ◽  
pp. 04021047
Author(s):  
Kai Xu ◽  
Xugang Hua ◽  
Walter Lacarbonara ◽  
Zhiwen Huang ◽  
Zhengqing Chen

Sign in / Sign up

Export Citation Format

Share Document