scholarly journals Decentralized control of vibrations in wind turbines using multiple active tuned mass dampers with stroke constraint

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881675
Author(s):  
Cong Cong

This article is devoted to the study of the vibration control for blades and tower in a wind turbine. Based on the Euler–Lagrangian method, a multi-body dynamic model including three blades with distributed parameter, tower, and their coupling is obtained. Multi active tuned mass dampers have been utilizing as damping devices. Therefore, the dynamics of the tuned mass dampers are also considered in modeling. The influence of extreme wind, and grid dynamics on the vibration of the blade was analyzed. Moreover, the nonlinearity induced by space constraints, which impact on vibration control, is introduced. For active control, the constrained decentralized control strategy is designed via linear matrix inequality which tuned mass dampers stroke constraints are modeled as hard constraints. A doubly fed induction generator connected to an infinite bus including the detailed electrical and structural model was performed on MATLAB/Simulink. Simulation results show that the control strategy can effectively reduce the vibration of the blade while the damper stroke satisfies the working space permitted by the blade. Investigations demonstrate promising results for decentralized constrained control in simultaneous control blade vibrations and tower vibrations. Each actuator is driven separately from the output of the corresponding sensor so that only local feedback control is achieved; this improves the system reliability.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaofang Kang ◽  
Jian Wu ◽  
Yewei Zhang ◽  
Guoliang Liu ◽  
Suhui Zhang ◽  
...  

A decentralized control strategy can effectively solve the control problem of the large-scale time delayed structures. In this paper, combining the overlapping decentralized control method, linear matrix inequality (LMI) method, and H∞ control algorithm, overlapping decentralized H∞ control approach of the time delayed structures has been established. The feedback gain matrixes of all subsystems are obtained by this method based on genetic algorithm optimization tools and the specific goal of optimization control. The whole vibration control system of the time delayed structures is divided into a series of overlapping subsystems by overlapping decentralized control strategy. The feedback gain matrixes of each subsystem can be obtained by using H∞ control algorithm to calculate each subsystem. The vibration control of a twenty layers’ antiseismic steel structure Benchmark model was analyzed with the numerical method. The results show that the proposed method can be applied to control system with time delay. The overlapping decentralized control strategies acquire the similar control effects with that of the centralized control strategy. Moreover, the flexibility of the controller design has been enhanced by using overlapping decentralized control strategies.


2018 ◽  
Vol 22 (7) ◽  
pp. 1544-1553 ◽  
Author(s):  
Cong Cong

Simultaneous control of wind turbine blades and tower vibrations is studied in this article. Four active tuned mass dampers have been incorporated into each blade and tower to reduce vibrations. A decentralized constrained H∞ velocity output feedback which restricts the tuned mass damper stroke as a hard constraint is proposed by solving linear matrix inequality. Each active tuned mass damper is driven individually by the output of the corresponding velocity signal. Considering the structural dynamics subjected to gravity, variable rotor speed, and aerodynamic loadings, a model describing dynamics of rotating blades coupled with tower, including the dynamics of active tuned mass dampers, was developed by Euler–Lagrangian formulation. A numerical simulation is carried out to verify the effectiveness of the proposed decentralized control scheme. Investigations show promising results for the active tuned mass damper in simultaneous control blade vibrations and tower vibrations by decentralized control approach. Numerical results demonstrate that the decentralized control has the similar performance compared to centralized control and effectively reduce the displacement of vibrations.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaofang Kang ◽  
Peipei Zhang ◽  
Yiwei Zhang ◽  
Dawei Man ◽  
Qinghu Xu ◽  
...  

A decentralized control scheme can effectively solve the control problem of civil engineering structure vibration under earthquake. This paper takes a research into the decentralized control scheme of adjacent buildings when the earthquake happens. It combines overlapping decentralized control method and linear matrix inequality (LMI) with H ∞ control algorithm and puts forward the overlapping decentralized H ∞ control method. A simplified dynamical model of structural vibration control has been established considering the topology structural features of adjacent buildings. The H ∞ control algorithm is applied into each dynamically different subsystems and can be also served as the decentralized H ∞ controllers. Therefore, by contracting decentralized H ∞ controllers to original state space, overlapping decentralized H ∞ controllers are obtained. In this manner, the adjacent buildings’ structure model is analyzed in terms of simulation and calculation which provides a comprehensive insight into vibration control. The results show that the centralized control, the decentralized control, and the overlapping decentralized control, based on linear matrix inequality, can be nearly effective in cases above satisfactorily. Besides, it can also reduce the computational cost as well as increase the flexibility of controller design.


Author(s):  
Biagio Carboni ◽  
Andrea Arena ◽  
Walter Lacarbonara

A passive vibration control strategy to mitigate the accelerations of roller batteries in cableways caused by the vehicle transit is investigated. The vibration control strategy makes use of a group of Tuned Mass Dampers (TMDs) placed in different positions along the roller battery. When the frequencies of the TMDs are properly tuned to the modes to control, the energy provided by the dynamic forcing to the roller battery is transferred as kinetic energy to the TMDs. This work investigates the effectiveness of an array of linear TMDs in comparison with the performance of hysteretic TMDs that exploit the restoring forces provided by an assembly of wire ropes. First a dynamical characterization of the roller battery (modal analysis) is carried out. Then an optimization of the assembly of linear TMDs against skew-symmetric harmonic excitations is achieved by means of the Differential Evolution algorithm (DE). Subsequently, the performance of the linear TMDs assembly against the vehicle transit across the tower is assessed. Finally the performance of a network of hysteretic TMDs is studied together with practical feasibility considerations.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Tao Tang ◽  
Shuilong He ◽  
Mingsong Ye ◽  
Enyong Xu ◽  
Weiguang Zheng

The vibration degree of a steering wheel has important reference significance for drivers to evaluate the ride comfort of the whole vehicle. To solve the jitter problem of the steering wheel of a commercial vehicle at idle speed, this work proposes a multinode joint vibration control strategy (MDVC) based on the associated vibration path of the steering wheel. Based on the analysis of the associated vibration transfer paths of the steering wheel, the whole vehicle was divided into a system comprising several nodes. For the decomposed node system, taking the vibration transmission path associated with the target as the research direction, the vibration reduction design of each node system is analyzed step by step. After exploring the possible causes of abnormal vibration of the steering wheel through experimental tests, the abnormal node structure interval was determined. By further extracting the structural model of the steering system from the vehicle, the hammering method was applied to test its modal and related frequency. Furthermore, an improved structure of steering support was also designed, and its fitting degree and modal characteristics were analyzed and compared to the original scheme. The following test results show that the structure improvement greatly reduces the vibration level of the steering wheel, meets the ideal design requirements of the steering wheel vibration reduction, and provides the possibility of weighing the correlation between these hierarchical node systems in whole vehicle.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ali Goodarzi ◽  
Ali Mohammad Ranjbar ◽  
Moslem Dehghani ◽  
Mina GhasemiGarpachi ◽  
Mohammad Ghiasi

AbstractIn this study, an auxiliary damping controller based on a robust controller considering the active and reactive power control loops for a doubly-fed induction generator for wind farms is proposed. The presented controller is able to improve the inter-area oscillation damping. In addition, the proposed controller applies only one accessible local signal as the input; however, it can improve the inter-area oscillation damping and, consequently the system stability for the various working conditions and uncertainties. The oscillatory modes of the system are appointed using the linear analysis. Then, the controller’s parameters are determined using the robust control approaches ($${H}_{\infty }/{H}_{2})$$ H ∞ / H 2 ) with the pole placement and linear matrix inequality method. The results of the modal analysis and time-domain simulations confirm that the controller develops the inter-area oscillation damping under the various working conditions and uncertainties.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


2020 ◽  
Vol 42 (1) ◽  
pp. 62-81
Author(s):  
Yanhuan Ren ◽  
Junqi Yu ◽  
Anjun Zhao ◽  
Wenqiang Jing ◽  
Tong Ran ◽  
...  

Improving the operational efficiency of chillers and science-based planning the cooling load distribution between the chillers and ice tank are core issues to achieve low-cost and energy-saving operations of ice storage air-conditioning systems. In view of the problems existing in centralized control architecture applied in heating, ventilation, and air conditioning, a distributed multi-objective particle swarm optimization improved by differential evolution algorithm based on a decentralized control structure was proposed. The energy consumption, operating cost, and energy loss were taken as the objectives to solve the chiller’s hourly partial load ratio and the cooling ratio of ice tank. A large-scale shopping mall in Xi’an was used as a case study. The results show that the proposed algorithm was efficient and provided significantly higher energy-savings than the traditional control strategy and particle swarm optimization algorithm, which has the advantages of good convergence, high stability, strong robustness, and high accuracy. Practical application: The end equipment of the electromechanical system is the basic component through the building operation. Based on this characteristic, taken electromechanical equipment as the computing unit, this paper proposes a distributed multi-objective optimization control strategy. In order to fully explore the economic and energy-saving effect of ice storage system, the optimization algorithm solves the chillers operation status and the load distribution. The improved optimization algorithm ensures the diversity of particles, gains fast optimization speed and higher accuracy, and also provides a better economic and energy-saving operation strategy for ice storage air-conditioning projects.


Sign in / Sign up

Export Citation Format

Share Document