dynamic forcing
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 9)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 2 (4) ◽  
pp. 991-1009
Author(s):  
Philippe Besson ◽  
Luise J. Fischer ◽  
Sebastian Schemm ◽  
Michael Sprenger

Abstract. Mechanisms driving the intensification and propagation direction of extratropical cyclones are an active field of research. Dry-dynamic forcing factors have been established as fundamental drivers of the deepening and propagation of extratropical cyclones, but their climatological interplay, geographical distribution, and relatedness to the observed cyclone deepening and propagation direction remain unknown. This study considers two key dry-dynamic forcing factors, the Eady growth rate (EGR) and the upper-level induced quasi-geostrophic lifting (QGω), and relates them to the surface deepening rates and the propagation direction during the cyclones' growth phase. To this aim, a feature-based cyclone tracking is used, and the forcing environment is climatologically analysed based on ERA-Interim data. The interplay is visualized by means of a forcing histogram, which allows one to identify different combinations of EGR and QGω and their combined influence on the cyclone deepening (12 h sea-level pressure change) and propagation direction. The key results of the study are as follows. (i) The geographical locations of four different forcing categories, corresponding to cyclone growth in environments characterized by low QGω and low EGR (Q↓E↓), low QGω but high EGR (Q↓E↑), high QGω and low EGR (Q↑E↓), and high QGω and EGR (Q↑E↑), display distinct hot spots with only mild overlaps. For instance, cyclone growth in a Q↑E↑ forcing environment is found in the entrance regions of the North Pacific and Atlantic storm tracks. Category Q↓E↑ is typically found over continental North America, along the southern tip of Greenland, over parts of East Asia, and over the western North Pacific. In contrast, category Q↑E↓ dominates the subtropics. (ii) The four categories are associated with different stages of the cyclones' growth phase: large EGR forcing typically occurs earlier, during the growth phase at genesis, while large QGω forcing attains its maximum amplitude later towards maturity. (iii) Poleward cyclone propagation is strongest over the North Pacific and North Atlantic, and the poleward propagation tendency becomes more pronounced as the deepening rate gets larger. Zonal, or even equatorward, propagation on the other hand is characteristic for cyclones developing in the lee of mountain ranges, e.g. to the lee of the Rocky Mountains. The exact location of maximum QGω forcing relative to the surface cyclone centre is found to be a good indicator for the direction of propagation, while no information on the propagation direction can be inferred from the EGR. Ultimately, the strength of the poleward propagation and of the deepening is inherently connected to the two dry-dynamic forcing factors, which allow cyclone development in distinct environments to effectively be identified.


2021 ◽  
Author(s):  
Philippe Besson ◽  
Luise J. Fischer ◽  
Sebastian Schemm ◽  
Michael Sprenger

Abstract. Mechanisms driving the intensification and propagation direction of extratropical cyclones are an active field of research. Dry-dynamic forcing factors have been established as fundamental drivers of the deepening and propagation of extratropical cyclones, but their climatological interplay, geographical distribution and relatedness to the observed cyclone deepening and propagation direction remains unknown. This study considers two key dry-dynamic forcing factors, the Eady Growth Rate (EGR) and the upper-level induced quasi-geostrophic lifting (QGω), and relates them to the surface deepening rates and the propagation direction during the cyclones' growth phase. To this aim, a feature-based cyclone tracking is used and the forcing environment is climatologically analyzed based on ERA-Interim data. The interplay is visualized by means of a forcing histogram, which allows one to identify different combinations of EGR and QGω and their combined influence on the cyclone deepening (12-hour sea-level pressure change) and propagation direction. The key results of the study are: (i) The geographical locations of four different forcing categories, corresponding to cyclone growth in environments characterized by low QGω and low EGR (Q↓E↓), low QGω but high EGR (Q↓E↑), high QGω and low EGR (Q↑E↓) and high QGω and EGR (Q↑E↑), displays distinct hot spots with only mild overlaps. For instance, cyclone growth in a Q↑E↑ forcing environment is found in the entrance regions of the North Pacific and Atlantic storm tracks. Category Q↓E↑ is typical found over continental North America, along the southern tip of Greenland, over parts of East Asia and the western North Pacific. In contrast, category Q↑E↓ dominates the subtropics; (ii) the four categories are associated with different stages of the cyclones' growth phase: large EGR forcing occurs typically earlier, during the growth phase at genesis, while large QGω forcing attains its maximum amplitude later towards maturity; (iii) poleward cyclone propagation is strongest over the North Pacific and North Atlantic, and the poleward propagation tendency becomes more pronounced as the deepening rate gets larger; zonal, or even equatorward propagation, on the other hand, is characteristic for cyclones developing in the lee of mountain ranges, e.g., to the lee of the Rocky Mountains. The exact location of maximum QGω forcing relative to the surface cyclone center is found to be a good indicator for the direction of propagation, while no information on the propagation direction can be inferred from the EGR. Ultimately, the strength of the poleward propagation and of the deepening are inherently connected and the two dry-dynamic forcing factors allow cyclone development in distinct environments to effectively be identified.


Structures ◽  
2020 ◽  
Vol 24 ◽  
pp. 415-425 ◽  
Author(s):  
R.E. White ◽  
N.A. Alexander ◽  
J.H.G. Macdonald ◽  
M. Bocian

Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 8 ◽  
Author(s):  
Larry J. Hopper ◽  
Courtney Schumacher ◽  
Karen Humes ◽  
Aaron Funk

Drop-size distributions (DSDs) provide important microphysical information about rainfall and are used in rainfall estimates from radar. This study utilizes a four-year DSD dataset of 163 rain events obtained using a Joss–Waldvogel impact disdrometer located in southeast Texas. A seasonal comparison of the DSD data shows that small (~1 mm diameter) drops occur more frequently in winter and fall, whereas summer and spring months see an increase in the relative frequency of medium and large (~>2 mm diameter) drops, with notable interannual variability in all seasons. Each rain event is classified by dynamic forcing and radar precipitation structure to more directly link environmental and storm organization properties to storm microphysics. Cold fronts and upper-level disturbances account for 80% of the rain events, whereas warm fronts, weakly forced situations, and tropical cyclones comprise the other 20%. Warm frontal storms and upper-level disturbances have smaller drops compared to the climatological DSD for southeast Texas, whereas the more dynamically vigorous cold fronts and weakly forced environments have larger drops. Tropical cyclones generally produce smaller drops than the climatology, but their DSD anomalies are sensitive to what part of the storm is sampled. Regardless of dynamic forcing, storms with precipitation structures that are mostly deep convective or stratiform rain formed from deep convection have larger drops, whereas stratiform rain formed from non-deep convection has smaller drops. Reflectivity-rain rate (Z-R) relationships that account for dynamic forcing and precipitation structures improve rainfall estimates compared to climatological Z-R relationships despite a wide spread in Z-R relationships by storm.


2019 ◽  
Vol 124 (5) ◽  
pp. 5003-5013 ◽  
Author(s):  
L. Ostrovsky ◽  
A. Lebedev ◽  
J. Riviere ◽  
P. Shokouhi ◽  
C. Wu ◽  
...  

Author(s):  
Jiajia Li ◽  
Ben Yuan ◽  
Pablo M. Carrica

This article presents progress on modeling bubble entrainment and transport around ships using hybrid Reynolds-averaged Navier–Stokes/large eddy simulation (RANS/LES) methods. Previous results using a Boltzmann-based polydisperse bubbly flow model show that LES perform better than RANS in predicting transport of bubbles to depth, a very important process to predict bubbly wakes. However, standard DES-type models fail to predict proper turbulent kinetic energy (TKE) and dissipation, needed by bubble entrainment, breakup, and coalescence models. We propose different approaches to obtain TKE and dissipation in LES regions and evaluate them for cases of increasing complexity, including decay of isotropic turbulence, a flat plate boundary layer, and the flow in the wake of the research vessel Athena. An exponential weighted average is used to estimate statistics and obtain the averaged quantities in regions with resolved turbulence. The TKE is satisfactorily predicted in the cases tested. A modified #x03C9; equation in the SST model is proposed to implicitly compute the dissipation, showing superior results than the standard DES models, although further improvements are necessary. A hybrid RANS/LES approach is proposed, which focused at conserving total TKE as the flow crosses RANS/LES interfaces, as previously performed for zonal approaches but attempting a DES-like detection of regions suitable for LES, critical for large-scale computations of bubbly flows involving complex geometries. A general form of a dynamic forcing term is derived to transfer the modeled TKE to resolved TKE with a controller to guarantee proper conservation of the energy transferred. It was verified that the model is not sensitive to grid size or time step. Improvements to DDES and the proposed TKE-conserving hybrid RANS/LES method show encouraging results, although remaining challenges are discussed.


Author(s):  
Biagio Carboni ◽  
Andrea Arena ◽  
Walter Lacarbonara

A passive vibration control strategy to mitigate the accelerations of roller batteries in cableways caused by the vehicle transit is investigated. The vibration control strategy makes use of a group of Tuned Mass Dampers (TMDs) placed in different positions along the roller battery. When the frequencies of the TMDs are properly tuned to the modes to control, the energy provided by the dynamic forcing to the roller battery is transferred as kinetic energy to the TMDs. This work investigates the effectiveness of an array of linear TMDs in comparison with the performance of hysteretic TMDs that exploit the restoring forces provided by an assembly of wire ropes. First a dynamical characterization of the roller battery (modal analysis) is carried out. Then an optimization of the assembly of linear TMDs against skew-symmetric harmonic excitations is achieved by means of the Differential Evolution algorithm (DE). Subsequently, the performance of the linear TMDs assembly against the vehicle transit across the tower is assessed. Finally the performance of a network of hysteretic TMDs is studied together with practical feasibility considerations.


Sign in / Sign up

Export Citation Format

Share Document