Using Physics-Informed Generative Adversarial Networks to Perform Super-Resolution for Multiphase Fluid Simulations

2021 ◽  
Author(s):  
Matthew Li ◽  
Christopher McComb

Abstract Computational Fluid Dynamics (CFD) simulations are useful to the field of engineering design as they provide deep insights on product or system performance without the need to construct and test physical prototypes. However, they can be very computationally intensive to run. Machine learning methods have been shown to reconstruct high-resolution single-phase turbulent fluid flow simulations from low-resolution inputs. This offers a potential avenue towards alleviating computational cost in iterative engineering design applications. However, little work thus far has explored the application of machine learning image super-resolution methods to multiphase fluid flow (which is important for important for emerging fields such as marine hydrokinetic energy conversion). In this work, we apply a modified version of the Super-Resolution Generative Adversarial Network (SRGAN) model to a multiphase turbulent fluid flow problem, specifically to reconstruct fluid phase fraction at a higher resolution. Two models were created in this work, one with a simple physics-constrained loss function and one without, and the results are discussed and analyzed. We found that both models were able to significantly outperform non-machine learning upsampling methods and can preserve an impressive amount of detail and nuance, showing the versatility of the SRGAN model for upsampling fluid simulations. However, the difference in accuracy between the two models is quite minimal. This indicates that, for these contexts studied here, the additional complexity of a physics-informed approach may not be justified.

2017 ◽  
Author(s):  
Benjamin Sanchez-Lengeling ◽  
Carlos Outeiral ◽  
Gabriel L. Guimaraes ◽  
Alan Aspuru-Guzik

Molecular discovery seeks to generate chemical species tailored to very specific needs. In this paper, we present ORGANIC, a framework based on Objective-Reinforced Generative Adversarial Networks (ORGAN), capable of producing a distribution over molecular space that matches with a certain set of desirable metrics. This methodology combines two successful techniques from the machine learning community: a Generative Adversarial Network (GAN), to create non-repetitive sensible molecular species, and Reinforcement Learning (RL), to bias this generative distribution towards certain attributes. We explore several applications, from optimization of random physicochemical properties to candidates for drug discovery and organic photovoltaic material design.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3726
Author(s):  
Ivan Vaccari ◽  
Vanessa Orani ◽  
Alessia Paglialonga ◽  
Enrico Cambiaso ◽  
Maurizio Mongelli

The application of machine learning and artificial intelligence techniques in the medical world is growing, with a range of purposes: from the identification and prediction of possible diseases to patient monitoring and clinical decision support systems. Furthermore, the widespread use of remote monitoring medical devices, under the umbrella of the “Internet of Medical Things” (IoMT), has simplified the retrieval of patient information as they allow continuous monitoring and direct access to data by healthcare providers. However, due to possible issues in real-world settings, such as loss of connectivity, irregular use, misuse, or poor adherence to a monitoring program, the data collected might not be sufficient to implement accurate algorithms. For this reason, data augmentation techniques can be used to create synthetic datasets sufficiently large to train machine learning models. In this work, we apply the concept of generative adversarial networks (GANs) to perform a data augmentation from patient data obtained through IoMT sensors for Chronic Obstructive Pulmonary Disease (COPD) monitoring. We also apply an explainable AI algorithm to demonstrate the accuracy of the synthetic data by comparing it to the real data recorded by the sensors. The results obtained demonstrate how synthetic datasets created through a well-structured GAN are comparable with a real dataset, as validated by a novel approach based on machine learning.


1967 ◽  
Vol 23 (4) ◽  
pp. 1042-1047 ◽  
Author(s):  
M. Kh. Ibragimov ◽  
I. A. Isupov ◽  
L. L. Kobzar' ◽  
V. I. Subbotin

Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Sign in / Sign up

Export Citation Format

Share Document