Detection of Electrolytes Based on Solid-State Ion-Selective Electrode

2021 ◽  
Author(s):  
Li-Da Chen ◽  
Gou-Jen Wang

Abstract This study aimed to develop simple electrochemical electrodes for the fast detection of chlorine, sodium, and potassium ions in human serum. A flat thin-film gold electrode was used as the detection electrode for chloride ions; a solid-state ion-selective electrode (ISE), which was formed by covering a flat thin-film gold electrode with a mixture of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and ion-selective membrane (ISM), was developed for sodium and potassium ions detection. Through cyclic voltammetry (CV) and square-wave voltammetry (SWV), the detection data can be obtained within two minutes. The linear detection ranges in the standard samples of chlorine, sodium, and potassium ions were 25–200 mM, 50–200 mM, and 2–10 mM, with the average relative standard deviation (RSD) of 0.79%, 1.65%, and 0.47% and the average recovery rates of 101%, 100%, and 96% respectively. Interference experiments using normal concentrations of Na+, K+, Cl−, Ca2+, and Mg2+ in human blood demonstrated that the proposed detection electrodes have good selectivity. Moreover, the proposed detection electrodes have characteristics such as the ability to be prepared under relatively simple process conditions, excellent detection sensitivity, and low RSD, and the detection linear range is suitable for the Cl−, Na+, and K+ concentrations in human serum.

Biosensors ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 109
Author(s):  
Li-Da Chen ◽  
Wei-Jhen Wang ◽  
Gou-Jen Wang

This study aimed to develop simple electrochemical electrodes for the fast detection of chloride, sodium and potassium ions in human serum. A flat thin-film gold electrode was used as the detection electrode for chloride ions; a single-piece type membrane based solid-state ion-selective electrode (ISE), which was formed by covering a flat thin-film gold electrode with a mixture of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and ion-selective membrane (ISM), was developed for sodium and potassium ions detection. Through cyclic voltammetry (CV) and square-wave voltammetry (SWV), the detection data can be obtained within two minutes. The linear detection ranges in the standard samples of chloride, sodium, and potassium ions were 25–200 mM, 50–200 mM, and 2–10 mM, with the average relative standard deviation (RSD) of 0.79%, 1.65%, and 0.47% and the average recovery rates of 101%, 100% and 96%, respectively. Interference experiments with Na+, K+, Cl−, Ca2+, and Mg2+ ions demonstrated that the proposed detection electrodes have good selectivity. Moreover, the proposed detection electrodes have characteristics such as the ability to be prepared under relatively simple process conditions, excellent detection sensitivity, and low RSD, and the detection linear range is suitable for the Cl−, Na+ and K+ concentrations in human serum.


1992 ◽  
Vol 38 (8) ◽  
pp. 1459-1465 ◽  
Author(s):  
P C Gunaratna ◽  
W F Koch ◽  
R C Paule ◽  
A D Cormier ◽  
P D'Orazio ◽  
...  

Abstract Three interlaboratory round-robin studies (RR1, RR2, and RR3) were conducted to identify a serum-based reference material that would aid in the standardization of direct ion-selective electrode (ISE) measurements of sodium and potassium. Ultrafiltered frozen serum reference materials requiring no reconstitution reduced between-laboratory variability (the largest source of imprecision) more than did other reference materials. ISE values for RR3 were normalized by the use of two points at the extremes of the clinical range for sodium (i.e., 120 and 160 mmol/L), with values assigned by the flame atomic emission spectrometry (FAES) Reference Method. This FAES normalization of ISE raw values remarkably improved all sources of variability and unified the results from seven different direct ISE analyzers to the FAES Reference Method value. Subsequently, a three-tiered, fresh-frozen human serum reference material was produced to the specifications developed in RR1-RR3, was assigned certified values for sodium and potassium by Definitive Methods at the National Institute of Standards and Technology (NIST), and was made available in 1990 to the clinical laboratory community as a Standard Reference Material (SRM); it is now identified as SRM 956. Albeit retrospectively, we show how applying an FAES normalization step identical to that used in RR4/5 to the ISE data for SRM 956 after the NIST Definitive Method values were known, consistently moved the ISE results for RR3 closer to the true value for Na+ and K+.


1986 ◽  
Vol 51 (11) ◽  
pp. 2437-2443
Author(s):  
František Kopecký ◽  
Mária Vojteková ◽  
Milan Pešák

The conventional activity of chloride ions was measured by an ion-selective electrode at 25 °C in aqueous solutions of benflurone, i.e. 5-(2-(N,N-dimethylamino)ethoxy)-7-oxo-7H-benzo(c)fluorene hydrochloride, without or with additions of KCl. These results suggest a gradual association of benflurone; the formation of a hetero-associate, (BH+)2Cl-, followed by higher associates was evaluated in the measured range up to 0.1 mol l-1.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2869
Author(s):  
Cecylia Wardak ◽  
Karolina Pietrzak ◽  
Małgorzata Grabarczyk

A new copper sensitive all solid-state ion-selective electrode was prepared using multiwalled carbon nanotubes-ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) nanocomposite as an additional membrane component. The effect of nanocomposite content in the membrane on the electrode parameters was investigated. The study compares, among others, detection limits, sensitivity, and the linearity ranges of calibration curves. Content 6 wt.% was considered optimal for obtaining an electrode with a Nernstian response of 29.8 mV/decade. An electrode with an optimal nanocomposite content in the membrane showed a lower limit of detection, a wider linear range and pH range, as well as better selectivity and potential stability compared to the unmodified electrode. It was successfully applied for copper determination in real water samples.


1971 ◽  
Vol 54 (4) ◽  
pp. 760-763
Author(s):  
William L Hoover ◽  
James R Melton ◽  
Peggy A Howard

Abstract A method for determining low levels of iodide in feeds and plants is proposed. The samples are mixed with a 10% phosphate solution to maintain relatively constant ionic strength and pH and analyzed with a solid-state iodide electrode. Ashing is not required and there are no significant interferences by ions commonly found in feeds. The method is accurate in determining iodide content ranging from 10.0 ppm to high concentrations. Necessary conditions for storing and cleaning the electrodes are described. The proposed method is rapid and results compare favorably with AOAC method 7.091.


Sign in / Sign up

Export Citation Format

Share Document