Coupled Lateral and Longitudinal Control for Trajectory Tracking, Lateral Stability, and Rollover Prevention of High-Speed Automated Vehicles Using Minimum-Time Model Predictive Control

2021 ◽  
Author(s):  
Shuping Chen ◽  
Huiyan Chen ◽  
Alex Pletta ◽  
Dan Negrut

Abstract Most controllers concerning lateral stability and rollover prevention for autonomous vehicles are designed separately and used simultaneously. However, roll motion influences lateral stability in cornering maneuvers, especially at high speed. Typical rollover prevention control stabilizes the vehicle with differential braking to create an understeering condition. Although this method can prevent rollover, it can also lead to deviation from a reference path specified for an autonomous vehicle. This contribution proposes and implements a coupled longitudinal and lateral controller for path tracking via model predictive control (MPC) to simultaneously enforce constraints on control input, state output, lateral stability, and rollover prevention. To demonstrate the approach in simulation, an 8 degrees of freedom (DOF) vehicle model is used as the MPC prediction model, and a high-fidelity 14-DOF model as the plant. The MPC-based lateral control generates a sequence of optimal steering angles, while a PID speed controller adjusts the driving or braking torque. The lateral stability envelope is determined by the phase plane of yaw rate and lateral velocity, while the roll angle threshold is derived from the load transfer ratio (LTR) and tire vertical force under the condition of quasi-steady-state rollover. To track the desired trajectory as fast as possible, a minimum-time velocity profile is determined using a forward-backward integration approach, subject to tire friction limit constraints. We demonstrate the approach in simulation, by having the vehicle track an arbitrary course of continuously varying curvature thus highlighting the accuracy of the controller and its ability to satisfy lateral and roll stability requirements. The MATLAB® code for the 8-DOF and 14-DOF vehicle models, along with the implementation of the proposed controller are available as open source in the public domain.

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6845
Author(s):  
Yoonsuk Choi ◽  
Wonwoo Lee ◽  
Jeesu Kim ◽  
Jinwoo Yoo

This paper proposes a novel model predictive control (MPC) algorithm that increases the path tracking performance according to the control input. The proposed algorithm reduces the path tracking errors of MPC by updating the sampling time of the next step according to the control inputs (i.e., the lateral velocity and front steering angle) calculated in each step of the MPC algorithm. The scenarios of a mixture of straight and curved driving paths were constructed, and the optimal control input was calculated in each step. In the experiment, a scenario was created with the Automated Driving Toolbox of MATLAB, and the path-following performance characteristics and computation times of the existing and proposed MPC algorithms were verified and compared with simulations. The results prove that the proposed MPC algorithm has improved path-following performance compared to those of the existing MPC algorithm.


2020 ◽  
Vol 14 (18) ◽  
pp. 2741-2751
Author(s):  
Lin Zhang ◽  
Hong Chen ◽  
Yanjun Huang ◽  
Hongyan Guo ◽  
Haobo Sun ◽  
...  

2014 ◽  
Vol 678 ◽  
pp. 377-381
Author(s):  
Long Sheng Wang ◽  
Hong Ze Xu

This paper addresses a position and speed tracking problem for high-speed train automatic operation with actuator saturation and speed limit. A nonlinear model predictive control (NMPC) approach, which allows the explicit consideration of state and input constraints when formulating the problem and is shown to guarantee the stability of the closed-loop system by choosing a proper terminal cost and terminal constraints set, is proposed. In NMPC, a cost function penalizing both the train position and speed tracking error and the changes of tracking/braking forces will be minimized on-line. The effectiveness of the proposed approach is verified by numerical simulations.


2009 ◽  
Vol 18 (07) ◽  
pp. 1167-1183 ◽  
Author(s):  
FARZAD TAHAMI ◽  
MEHDI EBAD

In this paper, different model predictive control synthesis frameworks are examined for DC–DC quasi-resonant converters in order to achieve stability and desired performance. The performances of model predictive control strategies which make use of different forms of linearized models are compared. These linear models are ranging from a simple fixed model, linearized about a reference steady state to a weighted sum of different local models called multi model predictive control. A more complicated choice is represented by the extended dynamic matrix control in which the control input is determined based on the local linear model approximation of the system that is updated during each sampling interval, by making use of a nonlinear model. In this paper, by using and comparing these methods, a new control scheme for quasi-resonant converters is described. The proposed control strategy is applied to a typical half-wave zero-current switching QRC. Simulation results show an excellent transient response and a good tracking for a wide operating range and uncertainties in modeling.


Author(s):  
Huy Nguyen ◽  
Omid Bagherieh ◽  
Roberto Horowitz

Track settling control for a hard disk drive with three actuators has been considered. The objective is to settle the read/write head on a specific track by following the minimum jerk trajectory. Robust output feedback model predictive control methodology has been utilized for the control design which can satisfy actuator constraints in the presence of noises and disturbances in the system. The controller is designed based on a low order model of the system and has been applied to a higher order plant in order to consider the model mismatch at high frequencies. Since the settling control generally requires a relatively low frequency control input, simulation result shows that the head can be settled on the desired track with 10 percent of track pitch accuracy while satisfying actuator constraints.


Sign in / Sign up

Export Citation Format

Share Document