Exploration of the Dynamics of Neuro-Cognition During TRIZ

2021 ◽  
Author(s):  
Julie Milovanovic ◽  
Mo Hu ◽  
Tripp Shealy ◽  
John Gero

Abstract The Theory of Inventive Problem Solving (TRIZ) method and toolkit provides a well-structured approach to support engineering design with pre-defined steps: interpret and define the problem, search for standard engineering parameters, search for inventive principles to adapt, and generate final solutions. The research presented in this paper explores the neuro-cognitive differences of each of these steps. We measured the neuro-cognitive activation in the prefrontal cortex (PFC) of 30 engineering students. Neuro-cognitive activation was recorded while students completed an engineering design task. The results show a varying activation pattern. When interpreting and defining the problem, higher activation is found in the left PFC, generally associated with goal directed planning and making analytical. Neuro-cognitive activation shifts to the right PFC during the search process, a region usually involved in exploring the problem space. During solution generation more activation occurs in the medial PFC, a region generally related to making associations. The findings offer new insights and evidence explaining the dynamic neuro-cognitive activations when using TRIZ in engineering design.

Author(s):  
William C. Regli

Abstract This paper describes our initial efforts to deploy a digital library to support engineering design and manufacturing. This experimental testbed, The Engineering Design Repository, is an effort to collect and archive public domain engineering data for use by researchers and engineering professionals. CAD knowledge-bases are vital to engineers, who search through vast amounts of corporate legacy data and navigate online catalogs to retrieve precisely the right components for assembly into new products. This research attempts to begin addressing the critical need for improved computational methods for reasoning about complex geometric and engineering information. In particular, we focus on archival and reuse of design and manufacturing data for mechatronic systems. This paper presents a description of the research problem and an overview of the initial architecture of testbed.


Author(s):  
Mohamed Galaleldin ◽  
Justine Boudreau ◽  
Hanan Anis

Engineering design courses often include a team-based project. Project-based learning offers a great opportunity for engineering students to learn about teamwork and collaboration. It also gives students a chance to learn about themselves and improve their conflict management skills. Choosing the right team members for a specific project is not trivial, as the choice of the team often affects the project outcome and the students’ experience in the course. Moreover, there is a debate among engineering educators as to whether it is better to force team composition or not. In this paper, we investigate the impact of team composition and formation on project outcomes and student satisfaction in a second-year engineering design course at the University of Ottawa. The course is open to all engineering students and has an accessibility theme. Students work in teams with a client that has a specific accessibility need. Students meet the client three times during the semester and deliver a physical prototype by the end of the semester. For this study, students in the design course were divided into two groups. Students in the first group were allowed to pick their teams, while the instructor created the teams in the second group based on multidisciplinary composition and year of study. Both groups had the same instructor and the same course material, labs, project choices, etc. Semi-structured interviews were conducted with a few teams in each group.


Author(s):  
Tripp Shealy ◽  
John Gero

AbstractTechniques and processes used for concept generation rely on composing new concepts and analysis given situational context. Composition and analysis require distinct neurocognitive function. For instance, jazz composition relies heavily on the right brain, while math relies on the left. Similar to music and math, is concept generation hemisphere dominant? What differences exist when using varying techniques? Twelve graduate engineering students were given three design tasks and instructed to use brainstorming, morphological analysis and TRIZ. A device called fNIRS measured cognitive activation. The results find left hemisphere dominance. More specifically, the left dorsolateral PFC (dlPFC), which is central to spatial working memory and filtering information. Temporal differences do exist. Morphological analysis and TRIZ reinforced the use of the left dlPFC, while brainstorming increased the use of the right dlPFC and medial PFC (mPFC) late during concept generation. The right dlPFC contributes to divergent thinking and mPFC facilitates memory retrieval. One explanation is designers relaxed rule constraints and more deeply searched for associations during brainstorming.


Author(s):  
Warren F. Smith

The “Warman Design and Build Competition”, running across Australasian Universities, is now in its 26th year in 2013. Presented in this paper is a brief history of the competition, documenting the objectives, yearly scenarios, key contributors and champion Universities since its beginning in 1988. Assuming the competition has reached the majority of mechanical and related discipline engineering students in that time, it is fair to say that this competition, as a vehicle of the National Committee on Engineering Design, has served to shape Australasian engineering education in an enduring way. The philosophy of the Warman Design and Build Competition and some of the challenges of running it are described in this perspective by its coordinator since 2003. In particular, the need is for the competition to work effectively across a wide range of student group ability. Not every group engaging with the competition will be competitive nationally, yet all should learn positively from the experience. Reported also in this paper is the collective feedback from the campus organizers in respect to their use of the competition as an educational experience in their classrooms. Each University participating uses the competition differently with respect to student assessment and the support students receive. However, all academic campus organizer responses suggest that the competition supports their own and their institutional learning objectives very well. While the project scenarios have varied widely over the years, the intent to challenge 2nd year university (predominantly mechanical) engineering students with an open-ended statement of requirements in a practical and experiential exercise has been a constant. Students are faced with understanding their opportunity and their client’s value system as expressed in a scoring algorithm. They are required to conceive, construct and demonstrate their device with limited prior knowledge and experience, and the learning outcomes clearly impact their appreciation for teamwork, leadership and product realization.


2021 ◽  
pp. 1-18
Author(s):  
Natalie M. Sisson ◽  
Emily Impett ◽  
L.H. Shu

Abstract Urgent societal problems, including climate change, require innovation and can benefit from interdisciplinary solutions. A small body of research has demonstrated the potential of positive emotions (e.g., gratitude, awe) to promote creativity and prosocial behavior, which may help address these problems. This study integrates, for the first time, psychology research on a positive and prosocial emotion (i.e., gratitude) with engineering-design creativity research. In a pre-registered study design, engineering students and working engineers (pilot N = 49; full study N = 329) completed gratitude, positive-emotion control, or neutral-control inductions. Design creativity was assessed through rater scores of responses to an Alternate Uses Task (AUT) and a Wind-Turbine-Blade Repurposing Task (WRT). No significant differences among AUT scores emerged across conditions in either sample. While only the pilot-study manipulation of gratitude was successful, WRT results warrant further studies on the effect of gratitude on engineering-design creativity. The reported work may also inform other strategies to incorporate prosocial emotion to help engineers arrive at more original and effective concepts to tackle environmental sustainability, and in the future, other problems facing society.


Author(s):  
S. Li ◽  
C. Chua

Mental simulation represents how a person interprets and understands the causal relations associated with the perceived information, and it is considered an important cognitive device to support engineering design activities. Mental models are considered information characterized in a person’s mind to understand the external world. They are important components to support effective mental simulation. This paper begins with a discussion on the experiential learning approach and how it supports learners in developing mental models for design activities. Following that, the paper looks at the four types of mental models: object, making, analysis and project, and illustrates how they capture different aspects and skills of design activities. Finally, the paper proposes an alternative framework, i.e., Spiral Learning Approach, which is an integration of Kolb’s experiential learningcycle and the Imaginative Education (IE) framework. While the Kolb’s cycle informs a pattern to leverage personal experiences to reusable knowledge, the IE’s framework suggests how prior experiences can trigger imagination and advance understandings. A hypothetical design of a snow removal device is used to illustrate the ideas of design-related mental models and the spirallearning approach.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
George Platanitis ◽  
Remon Pop-Iliev ◽  
Ahmad Barari

This paper proposes the use of a design structure matrix/work transformation matrix (DSM/WTM)-based methodology in academic settings to serve engineering educators as a facilitating tool for predetermining the difficulty and feasibility of design engineering projects they assign, given both the time constraints of the academic term and the expected skill level of the respective learners. By using a third-year engineering design project as a case study, engineering students actively participated in this comprehensive use of DSM methodologies. The engineering design process has been thoroughly analyzed to determine convergence characteristics based on the eigenvalues of the system followed by a sensitivity analysis on the originally determined DSM based on data provided by students in terms of task durations and number of iterations for each task. Finally, an investigation of the design process convergence due to unexpected events or random disturbances has been conducted. The obtained predictive model of the design process was compared to the actual dynamics of the project as experienced by the students and the effect of random disturbances at any point in the design process has thereby been evaluated.


Sign in / Sign up

Export Citation Format

Share Document