Crash/Crush Analysis of Vehicle Structures Utilizing Thin-Walled Beam Elements

Author(s):  
Xiaodong Tang ◽  
James C. Cheng

Abstract Using beam element in finite element analysis of automotive structures in the event of crash may significantly reduces the number of elements required to model the structures. It may significantly reduces the computing time for nonlinear integration. More significantly, it takes less time to establish, post-process and modify the models and is therefore, suitable for upfront engineering and concept analysis at early design stages. Considerable studies on beam elements (1–4) have been conducted and many commercial and academic finite element codes (5–7) incorporated it in their libraries. These beam elements are mostly based on the traditional theory that considers the deformation due to yielding and large displacement. However, the buckling phenomenon in the thin-walled components is not reflected in the formulation and therefore, the element are not suitable for thin-walled beams which are quite common in vehicle structures. In this study, a thin-walled beam element is developed to incorporate both the deformation due to material yielding and the deformation due to the buckling of the thin wall plates. The buckling characteristics of the plates is approximately and equivalently converted into the behavior of crush hinge. Like the conventional plastic hinges, the crush hinges are formulated into the finite beam element. The element buckling effect is reflected into the structural response. The beam element is coded into a computer program. The major formulations of beam element, numerical integration schemes of dynamic analysis and contact loading are illustrated in the follow sections. The computer program is used to analyze vehicle structures and the examples are shown in this paper. It should be pointed out that due to the limitations of beam element it is not possible to consider local design features such as small holes and notches. In those cases approximation must be adopted in finite element modeling.

1977 ◽  
Vol 99 (4) ◽  
pp. 600-604 ◽  
Author(s):  
J. N. C. Wu ◽  
J. F. Cory

The best way to design a nuclear steam generating system to withstand seismic stresses is to establish a mathematical model, to which seismic loading can be applied, to determine the dynamic responses of the system. A practical approach for establishing such a model is to idealize the components in terms of beam elements which form the essential building blocks of the analytical model. The major shell structures of reactor vessels and steam generators are usually supported at a single elevation in the system, and are often simulated by cantilever beam elements. The use of a beam element to represent shell structure must be justified. This paper presents the results of a parametric study of thin-walled cylindrical shells which are clamped at one end while the other end is free. By using 3-D plate/shell finite element analysis, the region of application, where the beam element can reasonably simulate to shell structure, has been defiined as the combination of its geometrical parameters, e.g., the thickness/radius and length/radius. As an illustrative example, the 3-D finite element method has been used to investigate the seismic analysis of a cantilever cylindrical shell similar to the Clinch River LMFBR reactor vessel. The numerical values are compared with those produced by a beam element model. The results and conclusions obtained by this investigation can be applied to improve dynamic modeling techniques in general.


Author(s):  
Xiaodong D. Tang ◽  
Chiming Lu

Abstract This paper presents finite element analysis (FEA) of simplified automotive structures using beam-like elements. The concept is to perform FEA quickly or at early product development stage in order to guide the design process. Two types of finite element models are studied: 1) simplified models which use beam elements to model beam-like components and use other elements for the rest of the vehicle parts such as joints, engines and roofs; 2) thin-walled beam models which purely use thin-walled beam elements. The static stiffness, modal and crash analyses are conducted and the correlation of the results with those from conventional methods are provided.


2011 ◽  
Vol 368-373 ◽  
pp. 930-933
Author(s):  
Wei Hou ◽  
Shuan Hai He ◽  
Cui Juan Wang ◽  
Gang Zhang

Being aimed to deformation problem of pre-stressed concrete thin-walled multi-room box girders exposed to co-action of fire and load, on the basis of enthalpy conduction model and thermo-mechanics parameters, the finite element procedure was applied to analyze the deformation of three spans pre-stressed concrete thin-walled multi-room box girders exposed to co-action of fire and load. In conclusion, the deflection is obvious under action of the variation width and fire load model.


1990 ◽  
Vol 112 (4) ◽  
pp. 481-483 ◽  
Author(s):  
Mack G. Gardner-Morse ◽  
Jeffrey P. Laible ◽  
Ian A. F. Stokes

This technical note demonstrates two methods of incorporating the experimental stiffness of spinal motion segments into a finite element analysis of the spine. The first method is to incorporate the experimental data directly as a stiffness matrix. The second method approximates the experimental data as a beam element.


Sign in / Sign up

Export Citation Format

Share Document