Robust Tracking for Uncertain Flexible Structures Using Mixed Time-Optimal and Sliding Mode Control

Author(s):  
Nader Jalili ◽  
Nejat Olgac

Abstract An improvement step in robust control is studied for uncertain (linear or nonlinear) systems. The proposed two-stage control scheme first modifies the original desired trajectory, and then imposes robustness against uncertainties in tracking this modified trajectory. For the trajectory modification stage, a simple scheme is considered : time optimal-rigid body motion (TO). The robustness stage is performed using Sliding Mode Control with Perturbation Estimation (SMCPE), an advanced form of SMC. This routine brings some strong features as demonstrated by examples. A rotating hub with flexible beam attachment is taken as the first example, and an undercontrolled two-mass system with a linear spring as the second. The comparative studies show superior results for the combination of TO-SMCPE over the basic SMCPE. Moreover, this two-stage control exhibits stable and highly advantages performance even for cases where H∞-type of robust control structure is declared unstable by earlier investigations.

Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


Author(s):  
Ali Abooee ◽  
Mohammad Hayeri Mehrizi ◽  
Mohammad Mehdi Arefi ◽  
Shen Yin

This paper deals with the finite-time trajectory tracking problem for a typical 3-DOF (degree of freedom) autonomous surface vehicle (ASV) subjected to parametric uncertainties and environmental disturbances. Based on the nonsingular terminal sliding mode control (NTSMC) method, several separate classes of robust control inputs are designed to exactly steer all position states of the 3-DOF AVS to the desired paths during alterable finite times. By exploiting the Lyapunov stability theorem and using mathematical analysis, it is proven that all classes of designed robust control inputs are able to fulfill the mentioned finite-time tracking aim. Moreover, three applicable formulas (represented as several nonlinear inequalities) are extracted to determine the required total finite times for the suggested control schemes. Lastly, all designed control methods are numerically tested onto a benchmark 3-DOF AVS called CyberShip II. Provided computer-based numerical simulations (using MATLAB software) depicted the acceptable performance of the proposed control techniques.


Sign in / Sign up

Export Citation Format

Share Document