Dynamic Threshold Method Based Aircraft Engine Sensor Fault Diagnosis

Author(s):  
Wenfei Li ◽  
Rama K. Yedavalli

It is challenging to have a good fault diagnostic scheme that can distinguish between model uncertainties and occurrence of faults, which helps in reducing false alarms and missed detections. In this paper, a dynamic threshold algorithm is developed for aircraft engine sensor fault diagnosis that accommodates parametric uncertainties. Using the robustness analysis of parametric uncertain systems, we generate upper-and-lower bound trajectories for the dynamic threshold. The extent of parametric uncertainties is assumed to be such that the perturbed eigenvalues reside in a set of distinct circular regions. Dedicated observer scheme is used for engine sensor fault diagnosis design. The residuals are errors between estimated state variables from a bank of Kalman filters. With this design approach, the residual crossing the upper-and-lower bounds of the dynamic threshold indicates the occurrence of fault. Application to an aircraft gas turbine engine Component Level Model clearly illustrates the improved performance of the proposed method.

2014 ◽  
Vol 687-691 ◽  
pp. 270-274 ◽  
Author(s):  
Feng Tian ◽  
Jian Yang Zheng ◽  
Tong Zhang

The fault diagnosis of unmanned aerial vehicle (UAV) flight control system is an important research of UAV in health management. The sensor is the link which easiest to have problems of the flight control system. Making timely and accurate prediction of its faults is particularly important. A strong tracking Kalman Filter method for the sensor fault diagnosis of UAV flight control system was presented in this paper. The parameters of the system were extended to the state variables, the sensor fault observer was constructed, and the joint estimation of states and parameters of flight control system were gotten. The method can be used to real-time estimate the unmeasured states and time-varying parameters. The results of simulation experiments show that the method has a good real-time and accuracy in the sensor fault diagnosis of flight control system.


2014 ◽  
Vol 490-491 ◽  
pp. 1657-1660 ◽  
Author(s):  
Tie Bin Zhu ◽  
Feng Lu

Considering the requirements of convinced sensor measurements for engine control, a method of aircraft engine sensor on line fault diagnosis and recovery based on least squares support vector machine (LS-SVM) is proposed. First, sensor sets correlations are calculated and the sensor with high correlation is selected by correlation analysis. Then sensor LS-SVM prediction model is established with the sensor itself primary data series and used to sensor fault diagnosis. The sensor recovery module is obtained based on the LSSVM algorithm with the high correlated sensor set, and is activated as the sensor failure detected. Experimental results show that the engine sensor fault recognition rate is satisfied by the proposed method, and could be used to turbofan engine sensor fault diagnosis and data recovery.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 20305-20317
Author(s):  
Shenglei Zhao ◽  
Jiming Li ◽  
Xuezhen Cheng

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2248
Author(s):  
Dimitrios A. Papathanasopoulos ◽  
Konstantinos N. Giannousakis ◽  
Evangelos S. Dermatas ◽  
Epaminondas D. Mitronikas

A non-invasive technique for condition monitoring of brushless DC motor drives is proposed in this study for Hall-effect position sensor fault diagnosis. Position sensor faults affect rotor position feedback, resulting in faulty transitions, which in turn cause current fluctuations and mechanical oscillations, derating system performance and threatening life expectancy. The main concept of the proposed technique is to detect the faults using vibration signals, acquired by low-cost piezoelectric sensors. With this aim, the frequency spectrum of the piezoelectric sensor output signal is analyzed both under the healthy and faulty operating conditions to highlight the fault signature. Therefore, the second harmonic component of the vibration signal spectrum is evaluated as a reliable signature for the detection of misalignment faults, while the fourth harmonic component is investigated for the position sensor breakdown fault, considering both single and double sensor faults. As the fault signature is localized at these harmonic components, the Goertzel algorithm is promoted as an efficient tool for the harmonic analysis in a narrow frequency band. Simulation results of the system operation, under healthy and faulty conditions, are presented along with the experimental results, verifying the proposed technique performance in detecting the position sensor faults in a non-invasive manner.


Author(s):  
Honghui Dong ◽  
Fuzhao Chen ◽  
zhipeng wang ◽  
Limin Jia ◽  
Yong Qin ◽  
...  

Author(s):  
V. Kamatchi Kannan ◽  
R. Srimathi ◽  
V. Gomathi ◽  
R. Valarmathi ◽  
L.T. PrithiEkammai

2016 ◽  
Vol 3 (1-2) ◽  
pp. 1-248 ◽  
Author(s):  
Vasso Reppa ◽  
Marios M Polycarpou ◽  
Christos G. Panayiotou
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document