Modeling and Control of Interconnected Dimensionless Dynamic Systems

Author(s):  
Scott Manwaring ◽  
Andrew Alleyne

Previous work has found benefit in using dimensional analysis in the modeling and control of dynamic systems. What has not been explored is how multiple dimensionless dynamic systems would interconnect and interact with one another. This work presents an initial investigation into the interconnection of dimensionless dynamic systems, including an analysis of the differences between interconnecting dimensioned and dimensionless systems. A strategy is developed to interconnect dimensionless dynamic systems and explored using models of multiple fluid power components. The interconnection strategy is tested through controller design and simulation, which reveals insight into the dimensionless transformation of the original dynamic systems.

2007 ◽  
Vol 31 (1) ◽  
pp. 127-141
Author(s):  
Yonghong Tan ◽  
Xinlong Zhao

A hysteretic operator is proposed to set up an expanded input space so as to transform the multi-valued mapping of hysteresis to a one-to-one mapping so that the neural networks can be applied to model of the behavior of hysteresis. Based on the proposed neural modeling strategy for hysteresis, a pseudo control scheme is developed to handle the control of nonlinear dynamic systems with hysteresis. A neural estimator is constructed to predict the system residual so that it avoids constructing the inverse model of hysteresis. Thus, the control strategy can be used for the case where the output of hysteresis is unmeasurable directly. Then, the corresponding adaptive control strategy is presented. The application of the novel modeling approach to hysteresis in a piezoelectric actuator is illustrated. Then a numerical example of using the proposed control strategy for a nonlinear system with hysteresis is presented.


Author(s):  
L. G. Barajas ◽  
A. Kansal ◽  
A. Saxena ◽  
M. Egerstedt ◽  
A. Goldstein ◽  
...  

Robotica ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 515-532 ◽  
Author(s):  
Adam Y. Le ◽  
James K. Mills ◽  
Beno Benhabib

SUMMARYA novel rigid-body control design methodology for 6-degree-of-freedom (dof) parallel kinematic mechanisms (PKMs) is proposed. The synchronous control of PKM joints is addressed through a novel formulation of contour and lag errors. Robust performance as a control specification is addressed. A convex combination controller design approach is applied to address the problem of simultaneously satisfying multiple closed-loop specifications. The applied dynamic modeling approach allows the design methodology to be extended to 6-dof spatial PKMs. The methodology is applied to the design of a 6-dof PKM-based meso-milling machine tool and simulations are conducted.


Author(s):  
Rico H. Hansen ◽  
Asger M. Iversen ◽  
Mads S. Jensen ◽  
Torben O. Andersen ◽  
Henrik C. Pedersen

In mobile hydraulic application the actuating fluid power system is most commonly controlled using a hydro-mechanical control scheme called Hydraulic Load Sensing (HLS). However, with the demands for increased efficiency and controllability the HLS solutions are reaching their limits. Motivated by availability of electronic controllable fluid power components and the potential of increased dynamic performance and efficiency, this paper investigates how HLS can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The investigation is performed by taking a specific application, a teletruck, and replace the HLS control with ELS. To aid the controller design for the ELS system, a complete model of the teletruck’s articulated arm and fluid power system is developed. To show the feasibility, a preliminary control structure for the ELS system is developed. The controller is tested on the machine, validating that features such as pump pressure control, flow sharing and over pressure protection can be implemented using ELS and with improved energy efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Zhiwei Gao ◽  
Dexing Kong ◽  
Chuanhou Gao

Author(s):  
Amey Y. Karnik ◽  
Jing Sun

A control oriented analysis of an anode recirculation system that uses an ejector with a variable throat area is presented for a PEMFC system. Two control issues addressed in this paper are (a) achieving desired recirculated flow to meet humidity control requirements, and (b) regulating anode pressure to protect the polymer membrane from deformation. To meet these objectives, a static feedforward controller using the variable throat area is applied to control the recirculation flow rate, while a proportional-integral controller is designed for anode pressure regulation. A dynamic system model comprising of a nonlinear static characterization of the ejector and dynamic representation of the anode recirculation flow path is developed for controller design and evaluation. Linear analysis is used to derive design guidelines for tuning the feedback controller and to analyze the interactions between the feedback and the feedforward controllers. Our analysis shows that the system characteristics are dependent on the operating condition of throat area of ejector. To meet the control objectives for different operating conditions, a gain scheduling scheme is proposed to adjust the feedback controller parameters and the performance is evaluated through simulations. Results for two representative conditions are included.


Author(s):  
Melody L. Baglione

The Cooper Union is developing a new simultaneous lecture and laboratory approach to address the pedagogical challenge of finding the appropriate balance between theory and hands-on experimentation in teaching dynamic systems and control concepts. The new approach dedicates one hour each week to laboratory experiments with the class subdivided into small student groups having greater faculty interaction. Bench top experiments from National Instruments and Quanser include DC motor and inverted pendulum modeling and control workstations. Process control test rigs from Feedback Inc. include level, flow, temperature, and pressure control trainers. Devoting significant time to laboratory experiments gives students the opportunities to fully appreciate feedback control concepts and to acquire valuable practical skills. This paper discusses the new instructional approach, preliminary results, lessons learned, and future plans for improving the systems and control curriculum.


Author(s):  
Vikram Ramanathan ◽  
Andy Zelenak ◽  
Mitch Pryor

Abstract This article presents a novel kinematic model and controller design for a mobile robot with four Centered Orientable Conventional (COC) wheels. When compared to non-conventional wheels, COC wheels perform better over rough terrain, are not subject to vertical chatter and offer better braking capability. However, COC wheels are pseudo-omnidirectional and subject to nonholonomic constraints. Several established modeling and control techniques define and control the Instantaneous Center of Rotation (ICR); however, this method involves singular configurations that are not trivial to eliminate. The proposed method uses a novel ICR-based kinematic model to avoid these singularities, and an ICR-based nonlinear controller for one ‘master’ wheel. The other ‘slave’ wheels simply track the resulting kinematic relationships between the ‘master’ wheel and the ICR. Thus, the nonlinear control problem is reduced from 12th to 3rd-order, becoming much more tractable. Simulations with a feedback linearization controller verify the approach.


Author(s):  
Nael Barakat ◽  
Hugh Jack

Most engineering products nowadays are multi-part integrated systems that are produced by teams of engineers. These systems are characterized by their complexity and diversity of components that range between being fully mechanical to being fully electrical components. A vital aspect in successfully building and running of these systems is the proper modeling and control of their dynamics. As mechanical engineering students graduate and face this reality, a hands-on preparation to deal with similar systems during college experience becomes very rewarding. The important elements of applying knowledge in dynamic systems modeling and control are practiced during the laboratory session in college. At the Grand Valley State University (GVSU) School of Engineering (SOE) the integration of electrical, mechanical and software systems is instructed and practiced in a required course (EGR 345) entitled "Dynamic systems Modeling and Control." This course includes a theoretical part where principles of system dynamics, system components, and system control are emphasized. The course capitalizes on students' previous knowledge of the simple isolated systems and modifies their strategies and approach to look and treat engineering systems as complete integrated entities. In addition, the course includes a significant lab component and a major project through which the student gains vital hands-on experience. In this paper, the philosophy and major components of the course are discussed. The focus is on presenting a sequence of lab experiments that serve the application of principles of dynamic systems modeling and control, as well as the final project. These experiments are characterized by its comprehensiveness and cost effectiveness. Moreover, an innovative method of making the lab equipment available to the students, and mostly owned by them, will also be summarized. As this approach minimizes the financial burden of the lab equipment, it also gives the students an element of ownership and comfort dealing with equipment they own and use. As a matter of fact, it ultimately leads to the utilization of these pieces of equipment in an innovative way to produce an engineering electromechanical system that will perform the tasks required by their final project description. A discussion on the pros and cons in the outcomes of this approach and some modification plans for the next course offering will be provided at the end of the paper.


Sign in / Sign up

Export Citation Format

Share Document