Imputation of Ramp Flow Data Using the Asymmetric Cell Transmission Traffic Flow Model

Author(s):  
Ajith Muralidharan ◽  
Roberto Horowitz

The Asymmetric Cell Transmission model can be used to simulate traffic flows in freeway sections. The model is specified by fundamental diagram parameters—determined from mainline data, and on-ramp and off-ramp flows. The mainline flow/density data are efficiently archived and readily available, but the ramp flow data are generally found missing. This paper presents an imputation technique based on iterative learning control to determine these flows. The imputation technique is applied sequentially on all the segments of the freeway, and the ramp flows, which minimize the error between the model calculated densities/flows and measurements are investigated. The stability and convergence of the density and flow errors using the imputation updates is also presented. Finally an example is shown to illustrate its use in a practical scenario.

Author(s):  
Afzal Ahmed ◽  
Satish V. Ukkusuri ◽  
Shahrukh Raza Mirza ◽  
Ausaja Hassan

Traffic streams in many developing countries consist of various modes of transport, with high heterogeneity in driver behavior. Modeling these types of traffic streams, in which traffic rules (speed limit, lane discipline, etc.) are not strictly followed, is a complex task. A review of the existing literature shows that there is a lack of traffic flow models that model the behavior of heterogeneous and undisciplined traffic streams. Like other undisciplined traffic streams, there are no speed limits (hence no speed enforcement) on most of the roads in Karachi, Pakistan. Lane discipline is also not observed by drivers, which results in a varying number of traffic lanes on a road. Therefore, most of the existing traffic flow models/simulation packages developed for disciplined traffic streams cannot appropriately model traffic streams without lane discipline. This research proposes a width-based cell transmission model (WCTM) by developing a fundamental flow-density diagram whose parameters are a function of the road width. Extensive field data have been collected from a selected arterial in Karachi for development of the fundamental traffic flow diagram. The values of the computed parameters are significantly different than the values reported in the literature. The piecewise-linear flow-density relation is developed by optimally estimating the breakpoints. Results show that the quadrilateral and pentagonal-shaped fundamental diagrams fit better with the collected data in comparison with the triangular-shaped fundamental diagram. The proposed WCTM is applied to selected segments of an arterial and results show that the WCTM was able to accurately model different traffic conditions.


Author(s):  
Zeyu Shi ◽  
Yangzhou Chen ◽  
Jingyuan Zhan ◽  
Xiangyu Guo ◽  
Shuke An

To describe the dynamics of traffic flow in the urban link accurately, the waves which generate at intersections are adopted as the influencing factors of traffic flow. Based on the urban traffic waves, a wave-oriented variable cell transmission model (WVCTM) is proposed to illustrate the urban traffic flow. In this model, the average density and length are the state variables. The cells are divided by traffic waves. The upstream cell is the influence area of the waves at the upstream intersection, the downstream cell is the influence area of the waves at the downstream intersection, and the rest is the mediate cell. Consistent with the fundamental diagram and the cell division, the traffic states of urban links are divided into six modes. The variation of modes is explained by hybrid automata. Finally, an experiment is designed to verify the feasibility of WVCTM. The data in the experiment come from the actual scene. Compared with the cell transmission model (CTM) and variable-length CTM (VCTM), WVCTM possesses the valuable performance to predict the traffic states. Likewise, it is rational that WVCTM can correctly illustrate the urban traffic flow.


2020 ◽  
Vol 02 (01) ◽  
pp. 01-05
Author(s):  
Afzal Ahmed ◽  
Mir Shabbar Ali ◽  
Toor Ansari

This research calibrates Cell Transmission Model (CTM) for heterogeneous and non-lane disciplined traffic, as observed in Pakistan and some other developing countries by constructing a flow-density fundamental traffic flow diagram. Currently, most of the traffic simulation packages used for such heterogonous and non-lane-disciplined traffic are not calibrated for local traffic conditions and most of the traffic flow models are developed for comparatively less heterogeneous and lane-disciplined traffic. The flow-density fundamental traffic flow diagram is developed based on extensive field data collected from Karachi, Pakistan. The calibrated CTM model is validated by using actual data from another road and it was concluded that CTM is capable of modelling heterogeneous and non-lane disciplined traffic and performed very reasonably. The calibrated CTM will be a useful input for the application of traffic simulation and optimization packages such as TRANSYT, SIGMIX, DISCO, and CTMSIM.


Author(s):  
W. Y. Szeto

The lagged cell-transmission model (L-CTM) is an enhanced version of the CTM. Both can be incorporated into a dynamic traffic assignment framework for offline transport planning and policy evaluation and online intelligent transportation system applications. In contrast to the CTM, the L-CTM adopts a nonconcave flow-density relation, which can be used to predict the existence of rather dense traffic in queues coasting toward the end of the queue or to help disprove the existence of this phenomenon. However, this study shows that the L-CTM can yield unrealistic densities, namely, negative densities and densities higher than theoretical jam density, the former of which has not been addressed in the literature. To cope with these unrealistic results, this study improves the L-CTM by introducing one more term in each sending and receiving function of the model. The improved model, the enhanced L-CTM (EL-CTM), is proved to yield nonnegative densities not greater than the jam density but can still allow the use of nonconcave density relations. The EL-CTM yields Lighthill-Whitham-Richards solutions when cell lengths and time intervals tend to zero and includes the CTM and the L-CTM as special cases. The EL-CTM is also shown to give more accurate solutions than the L-CTM (and hence also the CTM) does under a small increase in computation time. Hence the EL-CTM is believed to be more suitable for both online and offline applications in the future.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Facundo Storani ◽  
Roberta Di Pace ◽  
Francesca Bruno ◽  
Chiara Fiori

Abstract Background This paper compares a hybrid traffic flow model with benchmark macroscopic and microscopic models. The proposed hybrid traffic flow model may be applied considering a mixed traffic flow and is based on the combination of the macroscopic cell transmission model and the microscopic cellular automata. Modelled variables The hybrid model is compared against three microscopic models, namely the Krauß model, the intelligent driver model and the cellular automata, and against two macroscopic models, the Cell Transmission Model and the Cell Transmission Model with dispersion, respectively. To this end, three main applications were considered: (i) a link with a signalised junction at the end, (ii) a signalised artery, and (iii) a grid network with signalised junctions. Results The numerical simulations show that the model provides acceptable results. Especially in terms of travel times, it has similar behaviour to the microscopic model. By contrast, it produces lower values of queue propagation than microscopic models (intrinsically dominated by stochastic phenomena), which are closer to the values shown by the enhanced macroscopic cell transmission model and the cell transmission model with dispersion. The validation of the model regards the analysis of the wave propagation at the boundary region.


Sign in / Sign up

Export Citation Format

Share Document