scholarly journals Dynamics of Cilia-Based Microfluidic Devices

Author(s):  
Jiradech Kongthon ◽  
Jae-Hyun Chung ◽  
James Riley ◽  
Santosh Devasia

This article models the dynamics of cilia-based devices (soft cantilever-type, vibrating devices that are excited by external vibrations) for mixing and manipulating liquids in microfluidic applications. The main contribution of this article is to develop a model, which shows that liquid sloshing and the added mass effect play substantial roles in generating large-amplitude motion of the cilia. Additionally, experimental results are presented to show that (i) mixing is substantially improved with the use of cilia when compared to the case without cilia and (ii) mixing with cilia can be further enhanced by using an asymmetric excitation waveform when compared to sinusoidal excitation.

Author(s):  
J. Kongthon ◽  
J.-H. Chung ◽  
J. J. Riley ◽  
S. Devasia

This article models the dynamics of cilia-based devices (soft cantilever-type, vibrating devices that are excited by external vibrations) for mixing and manipulating liquids in microfluidic applications. The main contribution of this article is to develop a model, which shows that liquid sloshing and the added-mass effect play substantial roles in generating large-amplitude motion of the cilia. Additionally, experimental mixing results, with and without cilia, are comparatively evaluated to show more than one order-of-magnitude reduction in the mixing time with the use of cilia.


Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotorstator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the non-rotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gages, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disc. Its predictions are in good agreement with experimental results.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Yohei Magara ◽  
Kazuyuki Yamaguchi ◽  
Haruo Miura ◽  
Naohiko Takahashi ◽  
Mitsuhiro Narita

In designing an impeller for centrifugal compressors, it is important to predict the natural frequencies accurately in order to avoid resonance caused by pressure fluctuations due to rotor-stator interaction. However, the natural frequencies of an impeller change under high-density fluid conditions. The natural frequencies of pump impellers are lower in water than in air because of the added mass effect of water, and in high-pressure compressors the mass density of the discharge gas can be about one-third that of water. So to predict the natural frequencies of centrifugal compressor impellers, the influence of the gas must be considered. We previously found in the nonrotating case that some natural frequencies of an impeller decreased under high-density gas conditions but others increased and that the increase of natural frequencies is caused by fluid-structure interaction, not only the added mass effect but also effect of the stiffness of the gas. In order to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications, this paper presents experimental results obtained using a variable-speed centrifugal compressor with vaned diffusers. The maximum mass density of its discharge gas is approximately 300 kg/m3. The vibration stress on an impeller when the compressor was speeding up or slowing down was measured by strain gauges, and the natural frequencies were determined by resonance frequencies. The results indicate that for high-density centrifugal compressors, some natural frequencies of an impeller increased in high-density gas. To predict this behavior, we developed a calculation method based on the theoretical analysis of a rotating disk. Its predictions are in good agreement with experimental results.


Author(s):  
Yohei Magara ◽  
Mitsuhiro Narita ◽  
Kazuyuki Yamaguchi ◽  
Naohiko Takahashi ◽  
Tetsuya Kuwano

Characteristics of natural frequencies of an impeller and an equivalent disc were investigated in high-density gas to develop a method for predicting natural frequencies of centrifugal compressor impellers for high-density gas applications. The equivalent disc had outer and inner diameters equal to those of the impeller. We expected that natural frequencies would decrease with increasing the gas density because of the added-mass effect. However, we found experimentally that some natural frequencies of the impeller and the disc in high-density gas decreased but others increased. Moreover, we observed, under high-density condition, some resonance frequencies that we did not observe under low-density condition. These experimental results cannot be explained by only the added-mass effect. For simplicity, we focused on the disc to understand the mechanism of the behavior of natural frequencies. We developed a theoretical analysis of fluid-structure interaction considering not only the mass but also stiffness of gas. The analysis gave a qualitative explanation of the experimental results. In addition, we carried out a fluid-structure interaction analysis using the finite element method. The behavior of natural frequencies of the disc in high-density gas was predicted with errors less than 6%.


1983 ◽  
Vol 105 (12) ◽  
pp. 3789-3793 ◽  
Author(s):  
Bruce W. McClelland ◽  
Lise Hedberg ◽  
Kenneth Hedberg ◽  
Kolbjoern Hagen

Author(s):  
Eduard Egusquiza ◽  
Carme Valero ◽  
Quanwei Liang ◽  
Miguel Coussirat ◽  
Ulrich Seidel

In this paper, the reduction in the natural frequencies of a pump-turbine impeller prototype when submerged in water has been investigated. The impeller, with a diameter of 2.870m belongs to a pump-turbine unit with a power of around 100MW. To analyze the influence of the added mass, both experimental tests and numerical simulations have been carried out. The experiment has been performed in air and in water. From the frequency response functions the modal characteristics such as natural frequencies and mode shapes have been obtained. A numerical simulation using FEM (Finite Elements Model) was done using the same boundary conditions as in the experiment (impeller in air and surrounded by a mass of water). The modal behaviour has also been calculated. The numerical results were compared with the available experimental results. The comparison shows a good agreement in the natural frequency values both in air and in water. The reduction in frequency due to the added mass effect of surrounding fluid has been calculated. The physics of this phenomenon due to the fluid structure interaction has been investigated from the analysis of the mode-shapes.


2001 ◽  
Author(s):  
A. Khanicheh ◽  
A. Tehranian ◽  
A. Meghdari ◽  
M. S. Sadeghipour

Abstract This paper presents the kinematics and dynamic modeling of a three-link (3-DOF) underwater manipulator where the effects of hydrodynamic forces are investigated. In our investigation, drag and added mass coefficients are not considered as constants. In contrast, the drag coefficient is a variable with respect to all relative parameters. Experiments were conducted to validate the hydrodynamic model for a one degree-of-freedom manipulator up to a three degrees-of-freedom manipulator. Finally, the numerical and experimental results are compared and thoroughly discussed.


Sign in / Sign up

Export Citation Format

Share Document