Measurement of Muscle Stiffness to Improve Stability of Haptic Human-Robot Interfaces

Author(s):  
William Gallagher ◽  
Dalong Gao ◽  
Jun Ueda
1974 ◽  
Author(s):  
Gerald L. Gottlieb ◽  
Gyan C. Agarwal

Author(s):  
Bingfeng Shi ◽  
Jianhua Lv ◽  
Ying Liu ◽  
Yang Xiao ◽  
Changli Lü

Driven by the instability of perovskite quantum dots (PQDs), different encapsulation techniques are used to improve stability of PQDs. However, further improvements in the extreme environmental tolerance and polar solvent...


2021 ◽  
pp. 100945
Author(s):  
Steve Zaharias ◽  
Zihan Zhang ◽  
Kenneth Davis ◽  
Talia Fargason ◽  
Derek Cashman ◽  
...  

Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120315
Author(s):  
Feifei Wang ◽  
Pengfei Li ◽  
Jianchun Mi ◽  
Ziyun Shu

Women ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 71-79
Author(s):  
Akemi Sawai ◽  
Risa Mitsuhashi ◽  
Alexander Zaboronok ◽  
Yuki Warashina ◽  
Bryan J. Mathis

Chronic menstrual dysfunction and low female sex hormones adversely affect muscular performance in women but studies in college athletes are scarce. A cohort of 18 Japanese, female college athletes at the University of Tsukuba, Japan, were recruited and studied over 3 weeks under 2 conditions. One group had normal menstrual cycling (CYC, 9 athletes) while the other had irregular cycles (DYS, 9 athletes). Hormones and creatine kinase (CK) were measured from blood under both rest (RE) and exercise (EX) conditions. Biceps femoris tendon stiffness was measured by myometry. No differences in age, height, weight, menarche age, or one-repetition maximum weight existed between the groups. The DYS group had persistently low levels of estrogen and progesterone. In the CYC group, the CK level significantly increased at each point immediately post-exercise and 24 h post-exercise compared to pre-exercise in Weeks 1 and 2, and significantly increased at 24 h post-exercise compared to pre-exercise status in Week 3. The DYS group was significantly different only between pre-exercise and 24 h post-exercise over all 3 weeks. The DYS group also suffered from higher biceps femoris tendon stiffness at 24 h post-exercise. Chronic menstrual irregularities in Japanese college athletes increase muscle damage markers in the bloodstream and muscle stiffness after acute strength training.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Silvia Amor-Barris ◽  
Helle Høyer ◽  
Lin V. Brauteset ◽  
Els De Vriendt ◽  
Linda Strand ◽  
...  

Abstract Background Autosomal recessive axonal neuropathy with neuromyotonia has been linked to loss of functional HINT1. The disease is particularly prevalent in Central and South-East Europe, Turkey and Russia due to the high carrier frequency of the c.110G > C (p.Arg37Pro) founder variant. Results In a cohort of 748 Norwegian patients with suspected peripheral neuropathy, we identified two seemingly unrelated individuals, compound heterozygous for a new variant (c.284G > A, p.Arg95Gln) and the most common pathogenic founder variant (c.110G > C, p.Arg37Pro) in the HINT1 gene. Probands presented with motor greater than sensory neuropathy of various onset, accompanied by muscle stiffness and cramps in the limbs. Furthermore, they displayed non-classical symptoms, including pain in the extremities and signs of central nervous system involvement. Haplotype analysis in both patients revealed a common chromosomal background for p.Arg95Gln; moreover, the variant was identified in Swedish carriers. Functional characterization in HINT1-knockout and patient-derived cellular models, and in HNT1-knockout yeast, suggested that the new variant is deleterious for the function of HINT1 and provided mechanistic insights allowing patient stratification for future treatment strategies. Conclusion Our findings broaden the genetic epidemiology of HINT1-neuropathy and have implications for molecular diagnostics of inherited peripheral neuropathies in Scandinavia.


Author(s):  
Stefano Longo ◽  
Emiliano Cè ◽  
Angela Valentina Bisconti ◽  
Susanna Rampichini ◽  
Christian Doria ◽  
...  

Abstract Purpose We investigated the effects of 12 weeks of passive static stretching training (PST) on force-generating capacity, passive stiffness, muscle architecture of plantarflexor muscles. Methods Thirty healthy adults participated in the study. Fifteen participants (STR, 6 women, 9 men) underwent 12-week plantarflexor muscles PST [(5 × 45 s-on/15 s-off) × 2exercises] × 5times/week (duration: 2250 s/week), while 15 participants (CTRL, 6 women, 9 men) served as control (no PST). Range of motion (ROM), maximum passive resistive torque (PRTmax), triceps surae architecture [fascicle length, fascicle angle, and thickness], passive stiffness [muscle–tendon complex (MTC) and muscle stiffness], and plantarflexors maximun force-generating capacity variables (maximum voluntary contraction, maximum muscle activation, rate of torque development, electromechanical delay) were calculated Pre, at the 6th (Wk6), and the 12th week (Wk12) of the protocol in both groups. Results Compared to Pre, STR ROM increased (P < 0.05) at Wk6 (8%) and Wk12 (23%). PRTmax increased at Wk12 (30%, P < 0.05), while MTC stiffness decreased (16%, P < 0.05). Muscle stiffness decreased (P < 0.05) at Wk6 (11%) and Wk12 (16%). No changes in triceps surae architecture and plantarflexors maximum force-generating capacity variables were found in STR (P > 0.05). Percentage changes in ROM correlated with percentage changes in PRTmax (ρ = 0.62, P = 0.01) and MTC stiffness (ρ = − 0.78, P = 0.001). In CTRL, no changes (P > 0.05) occurred in any variables at any time point. Conclusion The expected long-term PST-induced changes in ROM were associated with modifications in the whole passive mechanical properties of the ankle joint, while maximum force-generating capacity characteristics were preserved. 12 weeks of PST do not seem a sufficient stimulus to induce triceps surae architectural changes.


Sign in / Sign up

Export Citation Format

Share Document