Modal Analysis of a Motorcycle Motion During Braking for its Stabilization Control System Design
In this paper, modal motion of a motorcycle during braking is analyzed to clarify influence of a stabilization control system designed to the modes. A thirteen degree-of-freedom nonlinear state-space model including rider’s motion is linearized around an equilibrium point of quasi-steady state straight running with constant deceleration, and the modal analysis is carried out using the linearized state-space models. Conducting mode separation and performing simulations utilizing the linearized state-space models, the behavior of the modes including capsize, weave, and wobble modes are analyzed. The characteristic of each mode is clarified from relationships among the impulsive responses of simulations and the eigenvectors obtained from eigenanalysis. Furthermore, the influence of a motorcycle stabilization control system to each mode is analyzed from simulation results.