Shared Fuzzy Control of Multiple Quadrotor UAVs With Time-Dependent Delay and Bounded Control-Input Constraint

Author(s):  
Mark D. Johnson ◽  
Mohammad A. Ayoubi

We propose a shared fuzzy controller for position and attitude control of multiple quadrotor unmanned aerial vehicles (UAVs). Using the nonlinear governing equations of motion and kinematics of a quadrotor, we develop a Takagi-Sugeno (T-S) fuzzy model for a quadrotor. Then, we consider time-varying delays due to wireless connectioninto the T-S fuzzy model. We use the sufficient stability condition based on the Lyapunov-Krasovskii stability theorem and the parallel distributed compensation (PDC) technique to determine the fuzzy control law. For practical purposes, we include actuator amplitude constraint into the design process. The problem of designing a shared fuzzy controller is cast in the form of linear matrix inequalities (LMIs). A feasible solution region is found in terms of maximum magnitude and rate of time-varying delay. In the end, the stability, performance, and robustness of the proposed shared fuzzy controller are examined via numerical simulation.

2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Weidong Zhang ◽  
Xianlin Huang ◽  
Xiao-Zhi Gao

This paper addresses the T-S fuzzy modelling and H∞ attitude control in three channels for hypersonic gliding vehicles (HGVs). First, the control-oriented affine nonlinear model has been established which is transformed from the reentry dynamics. Then, based on Taylor’s expansion approach and the fuzzy linearization approach, the homogeneous T-S local modelling technique for HGVs is proposed. Given the approximation accuracy and controller design complexity, appropriate fuzzy premise variables and operating points of interest are selected to construct the T-S homogeneous submodels. With so-called fuzzy blending, the original plant is transformed into the overall T-S fuzzy model with disturbance. By utilizing Lyapunov functional approach, a state feedback fuzzy controller has been designed based on relaxed linear matrix inequality (LMI) conditions to stable the original plants with a prescribed H∞ performance of disturbance. Finally, numerical simulations are performed to demonstrate the effectiveness of the proposed H∞ T-S fuzzy controller for the original attitude dynamics; the superiority of the designed T-S fuzzy controller compared with other local controllers based on the constructed fuzzy model is shown as well.


2006 ◽  
Vol 129 (3) ◽  
pp. 252-261 ◽  
Author(s):  
Huai-Ning Wu

This paper is concerned with the design of reliable robust H∞ fuzzy control for uncertain nonlinear continuous-time systems with Markovian jumping actuator faults. The Takagi and Sugeno fuzzy model is employed to represent an uncertain nonlinear system with Markovian jumping actuator faults. First, based on the parallel distributed compensation (PDC) scheme, a sufficient condition such that the closed-loop fuzzy system is robustly stochastically stable and satisfies a prescribed level of H∞-disturbance attenuation is derived. In the derivation process, a stochastic Lyapunov function is used to test the stability and H∞ performance of the system. Then, a new improved linear matrix inequality (LMI) formulation is applied to this condition to alleviate the interrelation between the stochastic Lyapunov matrix and system matrices containing controller variables, which results in a tractable LMI-based condition for the existence of reliable and robust H∞ fuzzy controllers. A suboptimal fuzzy controller is proposed to minimize the level of disturbance attenuation subject to the LMI constraints. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141775415 ◽  
Author(s):  
Xiaomeng Yin ◽  
Xinming Li ◽  
Lei Liu ◽  
Yongji Wang ◽  
Xing Wei

Achieving balance between robustness and performance is always a challenge in the hypersonic vehicle flight control design. In this research, we focus on dealing with uncertainties of the fuzzy control system from the viewpoint of reliability. A probabilistic robust mixed H2/ H∞ fuzzy control method for hypersonic vehicles is presented by describing the uncertain parameters as random variables. First, a Takagi–Sugeno fuzzy model is employed for the hypersonic vehicle nonlinear dynamics characteristics. Next, a robust fuzzy controller is developed by solving a reliability-based multi-objective linear matrix inequality optimization problem, in which the H2/ H∞ performance is optimized under the condition that the system is robustly reliable to uncertainties. By this method, the system performance and reliability can be taken into account simultaneously, which reduces the conservatism in the robust fuzzy control design. Finally, simulation results of a hypersonic vehicle demonstrate the feasibility and effectiveness of the presented method.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 179
Author(s):  
Chokri Sendi

This paper investigates the performance of a fuzzy optimal variance control technique for attitude stability and vibration attenuation with regard to a spacecraft made of a rigid platform and multiple flexible appendages that can be retargeted to the line of sight. The proposed technique addresses the problem of actuators’ amplitude and rate constraints. The fuzzy model of the spacecraft is developed based on the Takagi-Sugeno(T-S) fuzzy model with disturbances, and the control input is designed using the Parallel Distributed Compensation technique (PDC). The problem is presented as an optimization problem in the form of Linear Matrix Inequalities (LMIs). The performance and the stability of the proposed controller are investigated through numerical simulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Wen-Jer Chang ◽  
Bo-Jyun Huang

The variance and passivity constrained fuzzy control problem for the nonlinear ship steering systems with state multiplicative noises is investigated. The continuous-time Takagi-Sugeno fuzzy model is used to represent the nonlinear ship steering systems with state multiplicative noises. In order to simultaneously achieve variance, passivity, and stability performances, some sufficient conditions are derived based on the Lyapunov theory. Employing the matrix transformation technique, these sufficient conditions can be expressed in terms of linear matrix inequalities. By solving the corresponding linear matrix inequality conditions, a parallel distributed compensation based fuzzy controller can be obtained to guarantee the stability of the closed-loop nonlinear ship steering systems subject to variance and passivity performance constraints. Finally, a numerical simulation example is provided to illustrate the usefulness and applicability of the proposed multiple performance constrained fuzzy control method.


2021 ◽  
Vol 11 (5) ◽  
pp. 2286
Author(s):  
Carlos Andrés Torres-Pinzón ◽  
Leonel Paredes-Madrid ◽  
Freddy Flores-Bahamonde ◽  
Harrynson Ramirez-Murillo

Robust control techniques for power converters are becoming more attractive because they can meet with most demanding control goals like uncertainties. In this sense, the Takagi-Sugeno (T-S) fuzzy controller based on linear matrix inequalities (LMI) is a linear control by intervals that has been relatively unexplored for the output-voltage regulation problem in switching converters. Through this technique it is possible to minimize the disturbance rejection level, satisfying constraints over the decay rate of state variables as well as the control effort. Therefore, it is possible to guarantee, a priori, the stability of the large-signal converters in a broad operation domain. This work presents the design of a fuzzy control synthesis based on a T-S fuzzy model for non-minimum phase dc-dc converters, such as boost and buck-boost. First, starting from the canonical bilinear converters expression, a Takagi-Sugeno (T-S) fuzzy model is obtained, allowing to define the fuzzy controller structure through the parallel distributed compensation technique (PDC). Finally, the fuzzy controller design based on LMIs is solved for the defined specification in close loop through MATLAB toolbox LMI. Simulations and experimental results of a 60 W prototype are presented to verify theoretical predictions.


2014 ◽  
Vol 24 (4) ◽  
pp. 785-794 ◽  
Author(s):  
Wudhichai Assawinchaichote

Abstract This paper examines the problem of designing a robust H∞ fuzzy controller with D-stability constraints for a class of nonlinear dynamic systems which is described by a Takagi-Sugeno (TS) fuzzy model. Fuzzy modelling is a multi-model approach in which simple sub-models are combined to determine the global behavior of the system. Based on a linear matrix inequality (LMI) approach, we develop a robust H∞ fuzzy controller that guarantees (i) the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value, and (ii) the closed-loop poles of each local system to be within a specified stability region. Sufficient conditions for the controller are given in terms of LMIs. Finally, to show the effectiveness of the designed approach, an example is provided to illustrate the use of the proposed methodology.


2011 ◽  
Vol 20 (08) ◽  
pp. 1571-1589 ◽  
Author(s):  
K. H. TSENG ◽  
J. S. H. TSAI ◽  
C. Y. LU

This paper deals with the problem of globally delay-dependent robust stabilization for Takagi–Sugeno (T–S) fuzzy neural network with time delays and uncertain parameters. The time delays comprise discrete and distributed interval time-varying delays and the uncertain parameters are norm-bounded. Based on Lyapunov–Krasovskii functional approach and linear matrix inequality technique, delay-dependent sufficient conditions are derived for ensuring the exponential stability for the closed-loop fuzzy control system. An important feature of the result is that all the stability conditions are dependent on the upper and lower bounds of the delays, which is made possible by using the proposed techniques for achieving delay dependence. Another feature of the results lies in that involves fewer matrix variables. Two illustrative examples are exploited in order to illustrate the effectiveness of the proposed design methods.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Mi Wang ◽  
Shuai Song ◽  
Jingtao Man

This paper studies fuzzy controller design problem for a class of nonlinear switched distributed parameter systems (DPSs) subject to time-varying delay. Initially, the original nonlinear DPSs are accurately described by Takagi-Sugeno fuzzy model in a local region. On the basis of parallel distributed compensation technique, mode-dependent fuzzy proportional and fuzzy proportional-spatial-derivative controllers are constructed, respectively. Subsequently, using single Lyapunov-Krasovskii functional and some matrix inequality methods, sufficient conditions that guarantee the stability and dissipativity of the closed-loop systems are presented in the form of linear matrix inequalities, which allow the control gain matrices to be easily obtained. Finally, numerical examples are provided to demonstrate the validity of the designed controllers.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Lixin Wang ◽  
Zhe Luo ◽  
Xiaoqiang Li ◽  
Xinsan Li ◽  
Xiaogang Yang

This paper investigates the leaderless and leader-follower time-varying formation design and analysis problems for a group of networked agents subject to discontinuous communications. Firstly, a leaderless time-varying formation control protocol is proposed via the intermittent control strategy, where the control input of each agent is constructed by the distributed local state information and formation instructions in the communication time unit, but it is zero in the noncommunication time unit. Then, an explicit formulation of the formation center function is determined to describe the formation movement trajectory of the whole networked agents. Leaderless time-varying formation design and analysis with discontinuous communications are given in the form of linear matrix inequalities. Moreover, the main results of the leaderless cases are extended to the leader-follower cases. Finally, two numerical examples are provided to illustrate the theoretical results of leaderless and leader-follower cases, respectively.


Sign in / Sign up

Export Citation Format

Share Document