Reduced Order Model on DC Bias Effect on the Frequency Response of Electrostatically Actuated Biosensor Microplates

Author(s):  
Dumitru I. Caruntu ◽  
Christian Reyes

This paper investigates the frequency response of microplates under electrostatic actuation. The microplate is parallel to a fixed ground plate. The electrostatic force that actuates the system is given by both Alternate Current (AC) and Direct Current (DC) voltages. The AC frequency is set to be near half natural frequency of the structure. Damping influence is also investigated in this paper. The method of investigation is Reduced Order Model. The effects of various parameters on the response of the structure are reported.


Author(s):  
Dumitru I. Caruntu ◽  
Christian Reyes

This paper deals with superharmonic resonance of electrostatically actuated MEMS resonator sensors. The system consists of a MEMS cantilever on top of a parallel ground plate. An AC voltage of frequency near one fourth the natural frequency of the resonator provides the electrostatic force of actuation. The frequency response of the superharmonic resonance of the structure is investigated using two term Reduced Order Model (ROM) method.



Author(s):  
Dumitru I. Caruntu ◽  
Le Luo

This paper deals with electrostatically actuated Carbon Nano-Tubes (CNT) cantilevers using Reduced Order Model method. The system consists of a CNT parallel to a ground plate. An alternating current (AC) voltage is considered between the two. The CNT undergoes an oscillatory motion due to the electrostatic force generated by the voltage. Another two forces act on the CNT, namely a damping force, and a van der Waals force due to gaps less than 50 nm. The Method of Multiple Scales (MMS) and the Reduced Order Model (ROM) method (using AUTO solver) are used to investigate the system under soft excitations and/or weak nonlinearities. The frequency response is found in the case of AC near half natural frequency.



Author(s):  
Dumitru I. Caruntu ◽  
Jose C. Solis Silva

The nonlinear response of an electrostatically actuated cantilever beam microresonator sensor for mass detection is investigated. The excitation is near the natural frequency. A first order fringe correction of the electrostatic force, viscous damping, and Casimir effect are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for uniform microresonators with mass deposition and without are reported.



Author(s):  
Julio Beatriz ◽  
Dumitru I. Caruntu

Abstract In this paper, the Method of Multiple Scales, and the Reduced Order Model method of two modes of vibration are used to investigate the amplitude-frequency response of parametric resonance of electrostatically actuated circular plates under hard excitations. Results show that the Method of Multiple Scales is accurate for low voltages. However, it starts to separate from the Reduced Order Model results as the voltage values are larger. The Method of Multiple Scales is good for low amplitudes and weak non-linearities. Furthermore the Reduced Order Model running with AUTO 07p is validated and calibrated using the 2 Term ROM time responses.



Author(s):  
Dumitru I. Caruntu ◽  
Israel Martinez

The nonlinear response of an electrostatically actuated cantilever beam microresonator is investigated. The AC voltage is of frequency near resonator’s natural frequency. A first order fringe correction of the electrostatic force and viscous damping are included in the model. The dynamics of the resonator is investigated using the Reduced Order Model (ROM) method, based on Galerkin procedure. Steady-state motions are found. Numerical results for the uniform microresonator are compared with those obtained via the Method of Multiple Scales (MMS).



Author(s):  
Dumitru I. Caruntu ◽  
Kyle N. Taylor

This paper deals with a system of two coupled parallel identical MEMS cantilever resonators and a ground plate. Alternating Current (AC) and Direct Current (DC) voltages are applied between the first resonator and ground plate, and a DC voltage applied between the resonators. The AC voltage frequency is near natural frequency of the resonators. The electrostatic forces produced by voltages are nonlinear. System equations of motion are obtained using Lagrange equations, then nondimensionalized. The Method of Multiple Scales (MMS) is used to find the steady state frequency response. The Reduced Order Model (ROM) is used to validate MMS results. Matlab is used to find cantilever frequency response of the resonator tip. The DC voltage between resonators is showed to significantly influence the response of the first resonator.



Author(s):  
Dumitru I. Caruntu ◽  
Le Luo

This paper deals with electrostatically actuated Carbon Nano-Tubes (CNT) cantilevers using Reduced Order Model (ROM) method. Forces acting on the CNT cantilever are electrostatic, van der Waals, and damping. The van der Waals forces are significant for values of 50 nm or lower of the gap between the CNT and the ground plate. As both forces electrostatic and van der Waals are nonlinear, and the CNT electrostatic actuation is given by AC voltage, the CNT undergoes nonlinear parametric dynamics. The Method of Multiple Scales (MMS), and ROM are used to investigate the system under soft excitations and/or weak nonlinearities. The frequency-amplitude and frequency-phase behaviors are found in the case of parametric resonance.



Author(s):  
Dumitru I. Caruntu ◽  
Le Luo

This paper investigates electrostatically actuated Carbon Nano-Tubes (CNT) cantilevers biosensors using the Reduced Order Model (ROM) method. Forces acting on the CNT are electrostatic, damping, and van der Waals. The electrostatic actuation is given by soft AC voltage. Van der Waals forces are significant for gaps between the CNT and a ground plate lower than 100 nm. Both forces electrostatic and van der Waals are nonlinear. CNT undergoes nonlinear parametric dynamics. ROM is used to investigate the system under soft excitations and/or weak nonlinearities. The frequency-amplitude response is found in the case of primary resonance and compared to the Method of Multiple Scales (MMS). The CNT biosensor is to be used for mass detection applications.



Author(s):  
Dumitru I. Caruntu ◽  
Le Luo

This paper deals with electrostatically actuated Carbon Nano-Tubes (CNT) cantilevers using Reduced Order Model method. There are three kinds of forces acting on the CNT cantilever: electrostatic, elastostatic, and van der Waals. The van der Waals forces are significant for values of 50 nm or lower of the gap between the CNT and the ground plate. As both forceselectrostatic and van der Waals are nonlinear, and the CNT electrostatic actuation is given by AC voltage, the CNT undergoes nonlinear parametric dynamics. The Method of Multiple Scales (MMS), Reduced Order Model (ROM) and AUTO are used to investigate the system under soft excitations and/or weak nonlinearities. The frequency-amplitude and frequency-phase behaviors are found in the case of resonance near half natural frequency.



Sign in / Sign up

Export Citation Format

Share Document