Modeling, Hardware-in-the-Loop Simulations and Control Design for Small-Scale Vertical Axis Wind Turbines

Author(s):  
A. O. Onol ◽  
U. Sancar ◽  
A. Onat ◽  
S. Yesilyurt

In this study, we present a methodology for the assessment of overall performance for vertical axis wind turbines (VAWT) with straight blades. Salient features of our approach include a validated computational fluid dynamics (CFD) model and a hardware-in-the loop (HIL) test-bed. The two-dimensional, time-dependent CFD model uses the k-ε turbulence model and is coupled with the dynamics of the rotor involving friction and generator torques. The power coefficient curve for the rotor is obtained from the CFD simulations by varying the generator torque over time, and then used in the HIL test-bed that consists of an electrical motor, a gearbox, a permanent magnet synchronous generator, and an electronic load. In this setup, the VAWT rotor is mimicked by the electrical motor based on a power coefficient curve obtained from CFD simulations. Effects of the electrical conversion and control design on the overall performance of the VAWT are studied in the HIL setup. Additionally, a simple non-linear control (SNC) algorithm that mimics a model predictive controller and two different adaptations of the maximum power point tracking (MPPT) algorithm with fixed and variable step-sizes are designed and implemented in HIL simulations. According to results, the generator has a profound effect on the overall power output and the efficiency of the turbine; and the SNC and MPPT algorithms perform satisfactorily under step wind conditions.

Author(s):  
Omar Sherif Mohamed ◽  
Ahmed Ibrahim ◽  
Ahmed M. R. El Baz

Abstract The last few years have witnessed researches concerned by vertical axis wind turbine (VAWT) performance considering its advantages compared to the horizontal axis wind turbines, as it can be operated in urban areas without producing noise, ease of maintenance and simple construction, in addition to its low cost. More interest is growing in developing efficient clusters of VAWT in order to increase power generation at specific sites by using multiple turbines. In the present work, the performance of various configurations of Darrieus type VAWT clusters is examined using computational fluid dynamics (CFD) simulations. The objective of this work is to increase the overall power coefficient of the turbines cluster compared to single rotor performance. This objective shall be achieved by examining mutual interactions between rotors arranged in close proximity and examining the effect of oblique angle between rotors on overall performance of the cluster of rotors. The performance is assessed by observing the overall power coefficient of the cluster. Also, the velocity wake of the simulated three rotors turbine cases was analyzed and compared to the that of the single rotor.


Author(s):  
Jay P. Wilhelm ◽  
Emily D. Pertl ◽  
Franz A. Pertl ◽  
James E. Smith

Conventional straight bladed vertical axis wind turbines are typically designed to produce maximum power at tip speed ratio, but power production can suffer when operating outside of the design range. These turbines, unless designed specifically for low speed operation, may require rotational startup assistance. Circulation control methods, such as using blowing slots on the trailing edge could be applied to a Vertical Axis Wind Turbine (VAWT) blade. Improvements to the amount of power developed at lower speeds and elimination or reduction of startup assistance could be possible with this lift augmentation. Selection of a beneficial rotor solidity and control over when to utilize the blowing slots for the CC-VAWT (Circulation Controlled-Vertical Axis Wind Turbine) appears to have a profound impact on overall performance. Preliminary performance predictions indicate that at a greater range of rotor solidities, the CC-VAWT can have overall performance levels that exceed a conventional VAWT. This paper describes the performance predictions and solidity selection of a circulation controlled vertical axis wind turbine that can operate at higher overall capture efficiencies than a conventional VAWT.


2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


2021 ◽  
Author(s):  
Sarah Hardacre

The desire to bring space travel to a wider range of missions and uses has driven the market to using smaller and thus more affordable satellite systems. The Canadian Space Agency is completing the design and construction of a small satellite named QuickSat, which will utilize a magnetometer as one of its attitude and orbit determination instruments. A test bed comprised of three pairs of Helmholtz coils was used for hardware in the loop testing of the magnetometer. Testing was initially completed to prove the capabilities of the test bed, and then was completed to demonstrate the capabilities of the flight qualified magnetometer. The three pairs of Helmholtz coils were driven by data calculated from a spherical harmonic model of the Earth's magnetic field The coils were controlled using a robust controller and the magnetometer was used to drive the B-dot control law in the QuickSat simulation. The Ryerson Attitude and Control Experiment (RACE), which is a small satellite sized platform, free to spin about one axis on a near frictionless air bearing, was utilized to develop and test a system to deal with redundancy of satellite sensors. The possibility of missing, noisy or erroneous output during flight requires that a filter be applied to a satellite's flight code to determine with accuracy the attitude and orbit of the spacecraft. It was thus decided that a Kalman Filter be applied to RACE. The Kalman filter was applied to the RACE simulation successfully and initial hardware testing was carried out.


2015 ◽  
Vol 785 ◽  
pp. 310-314 ◽  
Author(s):  
Norzanah Rosmin ◽  
N.A. Rahman ◽  
A.H. Mustaamal

Vertical-Axis Wind Turbines (VAWTs) are known as the most suitable wind turbine for small-scale electrical generation. There are many types of VAWTs and each of it has different performances and efficiency. In this work, three types of VAWT systems (Savo-B2, Savo-B4 and Giro-B3) were designed, constructed and tested to investigate the amount of electrical power that could be generated under several constant wind speeds. The blade rotors were designed and built using 2 mm thickness of aluminum plate. The tip speed ratios, power coefficients, blade rotations for each blade rotor and the simplicity of the proposed designs were studied via an experimental setup. The experimental work demonstrates that Savo-B2 provides the highest power coefficient which is up to 0.32. Meanwhile, Giro-B3 offers the fastest rotational blade speed, up to 20.53 rad/s, among the three designs.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


Energy ◽  
2019 ◽  
Vol 180 ◽  
pp. 838-857 ◽  
Author(s):  
Abdolrahim Rezaeiha ◽  
Hamid Montazeri ◽  
Bert Blocken

Sign in / Sign up

Export Citation Format

Share Document