Optimal Energy Management in a Range Extender PHEV Using a Cascaded Dynamic Programming Approach

Author(s):  
Pradeep Sharma Oruganti ◽  
Daniel Jung ◽  
Mukilan Arasu ◽  
Qadeer Ahmed ◽  
Giorgio Rizzoni

Dynamic programming is widely used to benchmark the performance of a hybrid electric vehicle. It is also well documented that it is a very computationally heavy procedure depending on the number of states and control inputs in the problem formulation. In this paper we investigate the possibility of reduction in the computational time by splitting the number of states and control inputs between two models and applying dynamic programming individually, using the output of one as an input to the other and hence cascading the two models. A range extended hybrid electric vehicle powertrain architecture is modeled with four states and four control inputs, which is considered as the full model. Further, the states and control inputs of the battery and engine are separated from the other states, splitting them between the two new DP models. The vehicle performance estimated from this ‘cascaded models approach’ is compared with that from the full model. Initial comparisons show a very good match with minor differences in performance and considerable a reduction in computation time from around 6 hours to around a minute.

Author(s):  
Rajit Johri ◽  
Wei Liang ◽  
Ryan McGee

Battery capacity and battery thermal management control have a significant impact on the Hybrid Electric Vehicle (HEV) fuel economy. Additionally, battery temperature has a key influence on the battery health in an HEV. In the past, battery temperature and cooling capacity has not been included while performing optimization studies for power management or optimal battery sizing. This paper presents an application of Dynamic Programming (DP) to HEV optimization with battery thermal constraints. The optimization problem is formulated with 3 state variables, namely, the battery State Of Charge (SOC), the engine speed and the battery bulk temperature. This optimization is critical for determining appropriate battery size and battery thermal management design. The proposed problem has a major challenge in computation time due to the large state space. The paper describes a novel multi-rate DP algorithm to reduce the computational challenges associated with the particular class of large-scale problem where states evolve at very different rates. In HEV applications, the battery thermal dynamics is orders of magnitude slower than powertrain dynamics. The proposed DP algorithm provides a novel way of tackling this problem with multiple time rates for DP with each time rate associated with the fast and slow states separately. Additionally, the paper gives possible numerical techniques to reduce the DP computational time and the time reduction for each technique is shown.


Author(s):  
Saiful A. Zulkifli ◽  
◽  
Syaifuddin Mohd ◽  
Nordin Saad ◽  
A. Rashid A. Aziz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document