Performance Evaluation of Train Suspension Energy Harvesting Shock Absorber on Railway Vehicle Dynamics

Author(s):  
Yu Pan ◽  
Sijing Guo ◽  
Ruijin Jiang ◽  
Yong Xu ◽  
Zhiwen Tu ◽  
...  

Railway transportation has been increasingly significant for modern society in recent decades. To enable smart technology, such as health monitoring and electromagnetic braking for railway vehicles, a mechanical motion rectifier (MMR) based energy harvesting shock absorber (EHSA) has been proposed and proved to be capable of scavenging energy from the train suspension vibration. When installed on the train, MMR-EHSA works as a tunable damper in parallel with an inerter. This new suspension form brings great potential for further optimization of suspension dynamics but is rarely researched before. In this paper, the influence of the energy harvesting shock absorber (EHSA) on the railway vehicle dynamics performance is studied. A ten-degree of freedom vehicle model is established, with MMR shock absorber’s nonlinearity taken into account, with the purpose to analyze the influence of the EHSA on the ride comfort and wheel-rail vertical forces. Simulations are conducted by replacing the traditional shock absorber from train secondary suspension with the EHSA. Results show that EHSA could respectively harvest 180 W and 40 W average power at AAR 6th and 5th rail irregularity. In addition, compared with the traditional shock absorber, the MMR-EHSA can provide a higher ride comfort for passengers and slightly reduce the wheel-rail contact force.

Author(s):  
Sijing Guo ◽  
Lin Xu ◽  
Yilun Liu ◽  
Xuexun Guo ◽  
Lei Zuo

Energy-Harvesting Shock Absorber (EHSA), as a large-scale energy-harvesting mechanism for recovering suspension vibration energy, has been studied for years. A design of the regenerative shock absorber with Mechanical Motion Rectifier (MMR) has been proved to be more reliable and efficient. This paper reports a comprehensive study of the influence of MMR-based Energy-Harvesting Shock Absorber (MMR-EHSA) on vehicle dynamics performances. Models of MMR-EHSA and vehicle with MMR-EHSA with two degrees of freedom are created. Simulations are conducted on five typical vehicles, including passenger car, bus and three types of trucks. The ride characteristics of comfort, road handling and energy recovery are evaluated on these vehicles under various MMR rotational inertia and harvesting damping. The simulation results show that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously under certain conditions over the traditional shock absorbers, which broadens our knowledge of MMR-EHSA’s applicable scenarios.


2015 ◽  
Vol 733 ◽  
pp. 695-698
Author(s):  
Shu Shu Wang ◽  
Xiao Meng Shen ◽  
Xiao Jian Tu

With the increasing development of railway transportation, the wheel-rail wearing problem is becoming more and more serious while the increasing of both the operating speed and loading weight of railway vehicles. Active radial bogie is one of the hotspots for research in the area of decreasing the wheel-rail wearing issues. Meanwhile, the energy dissipation problem has been restricting its development. This paper puts forward a novel energy-harvesting active radial bogie for rail vehicles. Making use of the hydraulic electromagnetic energy-regenerative shock absorber, the vertical vibration energy could be harvested while train is traveling. Detailed study and evaluation for this active radial bogie will be presented. The tests and simulation results prove the effectiveness of the proposed bogie mechanism and control.


Author(s):  
Sunil Kumar Sharma ◽  
Anil Kumar

In a railway vehicle, vibrations are generated due to the interaction between wheel and track. To evaluate the effect of vibrations on the ride quality and comfort of a passenger vehicle, the Sperling's ride index method is frequently adopted. This paper focuses on the feasibility of improving the ride quality and comfort of railway vehicles using semiactive secondary suspension based on magnetorheological fluid dampers. Equations of vertical, pitch and roll motions of car body and bogies are developed for an existing rail vehicle. Moreover, nonlinear stiffness and damping functions of passive suspension system are extracted from experimental data. In view of improvement in the ride quality and comfort of the rail vehicle, a magnetorheological damper is integrated in the secondary vertical suspension system. Parameters of the magnetorheological damper depend on current, amplitude and frequency of excitations. Three semi-active suspension strategies with magnetorheological damper are analysed at different running speeds and for periodic track irregularity. The performance indices calculated at different semi-active strategies are juxtaposed with the nonlinear passive suspension system. Simulation results establish that magnetorheological damper strategies in the secondary suspension system of railway vehicles reduce the vertical vibrations to a great extent compared to the existing passive system. Moreover, they lead to improved ride quality and passenger comfort.


SIMULATION ◽  
2018 ◽  
Vol 95 (5) ◽  
pp. 441-459 ◽  
Author(s):  
Smitirupa Pradhan ◽  
AK Samantaray ◽  
R Bhattacharyya

This paper presents a complete model to estimate the effects of wheel wear on the dynamic behavior and ride comfort of a railway vehicle. A co-simulation of the vehicle dynamics modeled in ADAMS VI-Rail and wear evolution modeled in MATLAB is performed in a loop. The outputs from the vehicle dynamics simulation are used to compute the wear evolution, which in turn affects the vehicle dynamics. The local contact parameters, such as normal contact force, tangential stresses and slip, etc., and wear distribution for each cell of the contact surface are estimated with the help of Kalker’s simplified theory of rolling contact and Archard’s wear model, respectively. The wear distribution and smoothening of the wheel profile are obtained for a short travel distance and are then scaled up for larger travel distance. The worn wheel profile is updated in the vehicle dynamics model after every 10,000 km of travel for further dynamic analysis and this process is repeated until either the critical dynamic performance or wheel wear limits are reached. Several new results emerge by considering both acceleration and braking on a tangent track with sinusoidal irregularities. Critical speed appears to increase initially and then decrease quickly, whereas worn wheels give better ride comfort in both lateral and vertical directions as compared to new wheels. According to the results in this work, wheels may be recommended for re-profiling or replacement much before the critical wear depth recommended in maintenance guidelines is reached.


Author(s):  
Smitirupa Pradhan ◽  
Arun Kumar Samantaray ◽  
Ranjan Bhattarcharyya

Ride comfort is the level of comfort sensed by the passengers when they are continuously exposed to the vibration and noise. To diminish the vibration level, air springs are used in the secondary suspension system instead of coil springs, especially in the modern railway vehicles. This article focuses on the modeling of Nishimura air spring with non-linear damper and human biodynamic (bio-mechanical) model by using multi-energy domain modeling approach, bond graph. The car body of the railway vehicle is treated as a beam and the first five modes including three flexible modes are considered in the model. We use International Organization for Standardization 2631 for evaluating ride comfort for different durations of the travel time (1 h, 2.5 h, 4 h and 8 h) on flexible and irregular tracks.


2013 ◽  
Vol 135 (1) ◽  
Author(s):  
Lei Zuo ◽  
Pei-Sheng Zhang

This paper presents a comprehensive assessment of the power that is available for harvesting in the vehicle suspension system and the tradeoff among energy harvesting, ride comfort, and road handing with analysis, simulations, and experiments. The excitation from road irregularity is modeled as a stationary random process with road roughness suggested in the ISO standard. The concept of system H2 norm is used to obtain the mean value of power generation and the root mean square values of vehicle body acceleration (ride quality) and dynamic tire-ground contact force (road handling). For a quarter car model, an analytical solution of the mean power is obtained. The influence of road roughness, vehicle speed, suspension stiffness, shock absorber damping, tire stiffness, and the wheel and chasses masses to the vehicle performances and harvestable power are studied. Experiments are carried out to verify the theoretical analysis. The results suggest that road roughness, tire stiffness, and vehicle driving speed have great influence on the harvesting power potential, where the suspension stiffness, absorber damping, and vehicle masses are insensitive. At 60 mph on good and average roads, 100–400 W average power is available in the suspensions of a middle-sized vehicle.


Author(s):  
Jia Mi ◽  
Lin Xu ◽  
Sijing Guo ◽  
Lingshuai Meng ◽  
Mohamed A. A. Abdelkareem

With the development of high-speed rail technology, the interaction between wheel and track becomes more serious, which threatens the running stability, riding quality and safety of the vehicle. Due to the selected stiffness and damping parameters, conventional passive suspensions cannot fit in with the diverse conditions of the railway. Additionally, among these vibrations contains a large amount of energy, if this vibrational energy can be recycled and used for the active suspension to control, it will be a good solution compared to the conventional passive suspensions. Many energy-harvesting shock absorbers have been proposed in recent years, the most popular design is the electromagnetic harvester including linear electromagnetic shock absorbers, rotational electromagnetic shock absorbers, the mechanical motion rectifier (MMR), and the hydraulic electromagnetic energy-regenerative shock absorber (HESA). With different energy converting mechanisms, the complicated effects of the inertia and nonlinear damping behaviors will severely impact the vehicle dynamic performance such as the ride comfort and road handling. In the past few years, engineers and researchers have done relevant researches on HESA which have shown that it has good effects and proposed several suspension energy regeneration solutions for applying to car. This paper presents a novel application of HESA into a bogie system for railway vehicles comparing to the conventional suspension systems. HESA is composed of hydraulic cylinder, check valves, accumulators, hydraulic motor, generator, pipelines and so on. In HESA, the high-pressure oil which is produced by shock absorber reciprocation could be exported to drive the hydraulic motor, so as to drive the generator to generate electricity. In this way, HESA regenerate the mechanical vibrational energy that is otherwise dissipated by the traditional shock absorber as heat energy. Because the bogie has two sets of suspension systems, a dynamic model of bogie based on AMESim is established in order to clarify the influence of the dynamic characteristics effect and the energy harvesting efficiency when installing the HESA into different sets of the bogie. Then, set the HESA model into each suspension system of the bogie and input with the corresponding characteristic excitation, the influence of the dynamic characteristics and the energy harvesting efficiency are analyzed and compared. The simulation results show that the system can effectively reduce the vibration of the carriage, while maintaining good potential to recycle vibratory energy. Based on the results of the simulation, the relationships as well as differences between the first suspension system and second suspension system have been concluded, which are useful for the design of HESA-Bogie. Moreover, comparing the energy harvesting efficiency discrepancy between the two suspension systems, the potential of energy harvesting of a novel railway vehicle bogie system with HESA has been evaluated and then the best application department has been found, which indicates the theoretical feasibilities of the HESA-bogie to improve the fuel economy.


Author(s):  
Lin Xu ◽  
Yilun Liu ◽  
Sijing Guo ◽  
Xuexun Guo ◽  
Lei Zuo

Many energy-harvesting shock absorbers have been proposed in recent years, the most popular design is the electromagnetic harvester including linear electromagnetic shock absorbers, rotational electromagnetic shock absorbers, the mechanical motion rectifier (MMR), and the hydraulic-electromagnetic energy-regenerative shock absorber (HESA). With different energy converting mechanisms, the complicated effects of the inertia and nonlinear damping behaviors will greatly influence the vehicle dynamic performance such as the ride comfort and road handling. In this paper, we will theoretically analyze the dynamics of the suspension system with the HESA and give a guide for the HESA design. Then a simulation model of the HESA is built in AMESim to make comparison studies on the different vehicle dynamics caused by the nonlinear damping behaviors of the HESA. The advantages of HESA in terms of ride comfort and road handling will be evaluated in comparison with the similar design without accumulators and the traditional oil shock absorbers.


Author(s):  
Lei Zuo ◽  
Pei-Sheng Zhang

This paper presents a comprehensive assessment of the power that is available for harvesting in the vehicle suspension system and the tradeoff among energy harvesting, ride comfort, and road handing with analysis, simulations and experiments. The excitation from road irregularity is modeled as a stationary random process with road roughness suggested in the ISO standard. The concept of system H2 norm is used to obtain mean value of power generation and the root mean square values of vehicle body acceleration (ride quality) and dynamic tire-ground contact force (road handling). For a quarter car model, analytical solution of the mean power is obtained. The influence of road roughness, vehicle speed, suspension stiffness, shock absorber damping, tire stiffness, wheel and chasses masses to the vehicle performances and harvestable power are studied. Experiments are carried out to verify the theoretical analysis. The results suggest that road roughness, tire stiffness, and vehicle driving speed have great influence to the harvesting power potential, where the suspension stiffness, absorber damping, vehicle masses are insensitive. At 60mph on good and average roads 100–400 watts average power is available in the suspensions of a middle-size vehicle.


Sign in / Sign up

Export Citation Format

Share Document