A Novel Energy-Harvesting Active Radial Bogie for Railway Vehicles: Design, Simulation and HIL Test

2015 ◽  
Vol 733 ◽  
pp. 695-698
Author(s):  
Shu Shu Wang ◽  
Xiao Meng Shen ◽  
Xiao Jian Tu

With the increasing development of railway transportation, the wheel-rail wearing problem is becoming more and more serious while the increasing of both the operating speed and loading weight of railway vehicles. Active radial bogie is one of the hotspots for research in the area of decreasing the wheel-rail wearing issues. Meanwhile, the energy dissipation problem has been restricting its development. This paper puts forward a novel energy-harvesting active radial bogie for rail vehicles. Making use of the hydraulic electromagnetic energy-regenerative shock absorber, the vertical vibration energy could be harvested while train is traveling. Detailed study and evaluation for this active radial bogie will be presented. The tests and simulation results prove the effectiveness of the proposed bogie mechanism and control.

2020 ◽  
Author(s):  
Muhammad Yousaf Iqbal ◽  
Zhifei Wu ◽  
Khalid Mahmood

Abstract This article intends a hybrid energy harvesting shock absorber design which comprehends energy harvesting of automobile suspension vibration dissipation. A mathematical model of the energy harvesting prototype is established, and simulation results show that the dissipation energy can be recovered by varying the feed module, thereby got the damping forces ratio at different compression and extension stroke. The energy conversion from hydraulic energy to mechanical energy mainly then mechanical energy converted into electrical energy furthermore we can rechange our battery from this recovered energy. The advanced mathematical model and prototype proposed maximum ride comfort meanwhile recovered the suspension energy and fuel saving. This article shows the simulation results verifying it with prototype test results. The damping force of expansion stroke is higher than the damping force of compression stroke. The damping characteristics curves and speed characteristics curves verify the validity by simulation and prototyping damper at different amplitudes of off-road vehicles. The Hydraulic Electromagnetic Regenerative Shock Absorber (HESA) prototype characteristic is tested in which 65 watts recovered energy at 1.67 Hz excitation frequency. So, 14.65% maximum energy recovery efficiency got at 20 mm rod diameter and 8 cc/rev motor displacement. The damping characteristics of the HESA prototype examined and it has ideal performance as the standard requirements of the National Standard QC/T 491–1999.


Author(s):  
Wanda Afnison ◽  
Erzeddin Alwi ◽  
Hasan Maksum ◽  
Bahrul Amin ◽  
M Yasep Setiawan

This research is a development of previous research entitled "Designing Regenerative Shock Absorber as a Vibration Energy Harvesting Tool on Vehicles" in the PUPT scheme funded by PNBP UNP 2017. In this study optimization of design oriented to energy generation was carried out while also paying attention to aspects driving comfort that might change due to the installation of a harvesting energy mechanism. One aspect of the change occurred in the type of magnet used, namely a ring type magnet with a type of neodymium material.From the test results obtained by changing the value of the efficiency of the shock absorber after the ERSA mechanism is installed by 2%, this condition also has an impact on the dissimilarity of the attenuation value obtained by 2% for the front-rear (left) and (right) wheels. In terms of generation voltage obtained the maximum generation voltage obtained is 25,600 mV. Based on the data obtained, it needs further development ERSA, especially in the aspect of the electromagnetic mechanism to optimize the generation of electrical energy.


Author(s):  
Ziheng Zhu ◽  
Lin Xu ◽  
Mohamed A. A. Abdelkareem ◽  
Junyi Zou ◽  
Jia Mi

Abstract With the recent energy crisis, the new energy harvesting technologies have become one of the hot spots in engineering academic research and industrial applications. By its wide range of application fields, vibration energy harvesting technologies have been gradually developed and utilized in which an efficient and stable harvester technology is one of the recent key problems. In order to improve energy harvesting efficiency and reduce energy loss caused by motor inertial commutation, many mechanical structures or hydraulic structures that convert reciprocating vibration energy into single direction rotation of motor are proposed. Although these methods can improve energy harvesting efficiency, they can have negative effects in some cases, especially in the case of vibration energy harvesting from human beings. This paper proposes a vibration harvesting mechanism with mechanical rectification filter function applied to backpack. The prototype model of the system was established in SolidWorks and imported into ADAMS. Thereafter, dynamic analyses of mechanical rectification filtering characteristics and meshing characteristics of one-way clutch were simulated in ADAMS. Based on ADAMS, parametric design analysis and its influence on the mechanical rectification characteristics were investigated. The simulation results were validated by bench test results. Simulation results is done by ADAMS and the results match well with bench test results.


Author(s):  
Sijing Guo ◽  
Lin Xu ◽  
Yilun Liu ◽  
Xuexun Guo ◽  
Lei Zuo

Energy-Harvesting Shock Absorber (EHSA), as a large-scale energy-harvesting mechanism for recovering suspension vibration energy, has been studied for years. A design of the regenerative shock absorber with Mechanical Motion Rectifier (MMR) has been proved to be more reliable and efficient. This paper reports a comprehensive study of the influence of MMR-based Energy-Harvesting Shock Absorber (MMR-EHSA) on vehicle dynamics performances. Models of MMR-EHSA and vehicle with MMR-EHSA with two degrees of freedom are created. Simulations are conducted on five typical vehicles, including passenger car, bus and three types of trucks. The ride characteristics of comfort, road handling and energy recovery are evaluated on these vehicles under various MMR rotational inertia and harvesting damping. The simulation results show that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously under certain conditions over the traditional shock absorbers, which broadens our knowledge of MMR-EHSA’s applicable scenarios.


Author(s):  
Yu Pan ◽  
Sijing Guo ◽  
Ruijin Jiang ◽  
Yong Xu ◽  
Zhiwen Tu ◽  
...  

Railway transportation has been increasingly significant for modern society in recent decades. To enable smart technology, such as health monitoring and electromagnetic braking for railway vehicles, a mechanical motion rectifier (MMR) based energy harvesting shock absorber (EHSA) has been proposed and proved to be capable of scavenging energy from the train suspension vibration. When installed on the train, MMR-EHSA works as a tunable damper in parallel with an inerter. This new suspension form brings great potential for further optimization of suspension dynamics but is rarely researched before. In this paper, the influence of the energy harvesting shock absorber (EHSA) on the railway vehicle dynamics performance is studied. A ten-degree of freedom vehicle model is established, with MMR shock absorber’s nonlinearity taken into account, with the purpose to analyze the influence of the EHSA on the ride comfort and wheel-rail vertical forces. Simulations are conducted by replacing the traditional shock absorber from train secondary suspension with the EHSA. Results show that EHSA could respectively harvest 180 W and 40 W average power at AAR 6th and 5th rail irregularity. In addition, compared with the traditional shock absorber, the MMR-EHSA can provide a higher ride comfort for passengers and slightly reduce the wheel-rail contact force.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Junyi Zou ◽  
Xuexun Guo ◽  
Lin Xu ◽  
Gangfeng Tan ◽  
Chengcai Zhang ◽  
...  

To reduce energy consumption or improve energy efficiency, the regenerative devices recently have drawn the public’s eyes. In this paper, a novel hydraulic energy-regenerative shock absorber (HERSA) is developed for vehicle suspension to regenerate the vibration energy which is dissipated by conventional viscous dampers into heat waste. At first, the schematic of HERSA is presented and a mathematic model is developed to describe the characteristic of HERSA. Then the parametric sensitivity analysis of the vibration energy is expounded, and the ranking of their influences is k1≫m2>m1>k2≈cs. Besides, a parametric study of HERSA is adopted to research the influences of the key parameters on the characteristic of HERSA. Moreover, an optimization of HERSA is carried out to regenerate more power as far as possible without devitalizing the damping characteristic. To make the optimization results more close to the actual condition, the displacement data of the shock absorber in the road test is selected as the excitation in the optimization. The results show that the RMS of regenerated energy is up to 107.94 W under the actual excitation. Moreover it indicates that the HERSA can improve its performance through the damping control.


Sign in / Sign up

Export Citation Format

Share Document