Energy Consumption and Technical Potential of Energy Saving in a Hospital

Author(s):  
S. Okamoto

This paper describes a study starting from an analysis of typical energy demand profiles in a hospital setting followed by the feasibility study of a cogeneration system (CGS). The concept is a future autonomous system for the combined generation of electrical, heating and cooling energy in the hospital. The driving cogeneration units are two high-efficiency gas engines; this is used to produce the electrical and heat energy. Gas engine is used as a driving unit because of high needs for electrical and heating energy. The natural gas-fuelled reciprocating engine is used to generate 735kW of power. In our case electrical energy will be used only in the Hospital. A deficit in electricity can be also purchased from the public network. The generated steam will be used to drive three steam-fired absorption chillers and delivered to individual consumers of heat. This system is capable of doing simultaneous heating and cooling. No obstacles were recognized for the technical feasibility of CGS. The average ratio between electric and thermal load in the Hospital is suitable to make CGS system operate. A feasibility analysis performed for a non-optimized CGS system predicted a large potential for primary energy saving.

Author(s):  
S. Okamoto

This paper describes a study that starts with an analysis of typical energy demand profiles in a hospital setting followed by a case study of a cogeneration system (CGS) under an energy service company (ESCO) project. The CGS idea is of an autonomous system for the combined generation of electrical, heating, and cooling energy in a hospital. The driving units are two high-efficiency gas engines that produce the electrical and heat energy. A gas engine meets the requirement for high electrical and heating energy demands; a natural gas-fuelled reciprocating engine is used to generate 735 kW of power. In our case, the electrical energy will be used only in the hospital. A deficit in electricity can be covered by purchasing power from the public network. Generated steam drives three steam-fired absorption chillers and is delivered to individual heat consumers. This system can provide simultaneous heating and cooling. No technical obstacles were identified for implementing the CGS. The average ratio between electric and thermal loads in the hospital is suitable for CGS system operation. An analysis performed for a non-optimized CGS system predicted a large potential for energy savings.


Author(s):  
S. Okamoto

This paper describes a study that starts with an analysis of typical energy demand profiles in a hospital setting followed by a case study of a CCHP system. The CCHP idea is of an autonomous system for the combined generation of electrical, heating, and cooling energy in a hospital. The driving units are two high-efficiency gas engines that produce the electrical and heat energy. A gas engine meets the requirement for high electrical and heating energy demands; a natural gas-fuelled reciprocating engine is used to generate 735 kW of power. In our case, the electrical energy was used only in the hospital. A deficit in electricity can be covered by purchasing power from the public network. Generated steam drives three steam-fired absorption chillers and is delivered to individual heat consumers. This system can provide simultaneous heating and cooling. No technical obstacles were identified for implementing the CCHP. The typical patterns for driving units of CCHP were decided by the hourly energy demands in several seasons throughout the year. The average ratio between electric and thermal loads in the hospital is suitable for CCHP system operation. An analysis performed for a non-optimized CCHP system predicted a large potential for energy savings and CO2 reduction.


Author(s):  
S. Okamoto

This paper describes a study starting from an analysis of typical energy demand profiles in a hospital setting followed by the case study of a cogeneration system (CGS) by an ESCO (Energy Service Company) project. The concept is a future autonomous system for the combined generation of electrical, heating and cooling energy in the hospital. The driving cogeneration units are two high-efficiency gas engines; this is used to produce the electrical and heat energy. Gas engine is used as a driving unit because of high needs for electrical and heating energy. The natural gas-fuelled reciprocating engine is used to generate 735kW of power. In our case electrical energy will be used only in the Hospital. A deficit in electricity can be also purchased from the public network. The generated steam will be used to drive three steam-fired absorption chillers and delivered to individual consumers of heat. This system is capable of doing simultaneous heating and cooling. No obstacles were recognized for the technical feasibility of CGS. The average ratio between electric and thermal load in the Hospital is suitable to make CGS system operate. An analysis performed for a non-optimized CGS system predicted a large potential for energy savings.


2020 ◽  
Vol 12 (18) ◽  
pp. 7699
Author(s):  
Margarita-Niki Assimakopoulos ◽  
Dimitra Papadaki ◽  
Francesco Tariello ◽  
Giuseppe Peter Vanoli

The reduction of buildings energy demand represents one of the main goals in developed countries in order to achieve a sustainable future. In Italy a significant number of public administration offices are located in historical buildings, especially in small provincial towns. In this paper the analysis of the energy and environmental effects deriving from the plant renovation of the Palazzo San Giorgio, the building offices of the municipality of Campobasso (Southern Italy), is carried out. The simulation model of the building-plant system has been implemented with the TRNSYS software using data collected in the survey campaign. It has been calibrated on the basis of the billed electricity and gas consumption and then, further used to evaluate the reduction of the building primary energy demands and CO2 emissions deriving from some non-invasive energy refurbishment measures: led lighting, thermostatic valves, cogeneration system and photovoltaic plant. The latter was considered in two variants: the first one provides a system completely integrated into the roof, the second one high efficiency non-integrated panels. The interventions have been evaluated both individually and combined. A primary energy saving of about 47% and a reduction in CO2 emissions of 73% are obtained with the best combined renovation action.


2010 ◽  
Vol 14 (2) ◽  
pp. 541-553 ◽  
Author(s):  
Mirko Stojiljkovic ◽  
Mladen Stojiljkovic ◽  
Bratislav Blagojevic

Tri-generation systems are used to simultaneously produce electrical, heating, and cooling energy. These systems are usually more efficient than conventional systems for separate production and have smaller distribution losses since they are often located closer to the consumer. For achievement of the best technical and/or financial results, tri-generation plants have to be properly, i. e. optimally designed and operated. Operational optimization is used for short term production planning, control of tri-generation systems operation and as a part of design level optimization. In this paper an approach to operational optimization of tri-generation plants with reciprocating engines is presented with the following mathematical model. It is also explained how this algorithm might be embedded in some larger optimization procedure. In this approach, the importance of the part load performance of different units of the tri-generation systems is emphasized, especially of co-generation unit, i. e. engine generator set and thus it relies on manufacturers' data and is characterized with relatively high level of details examined. Mathematical model is based on the equipment performance based constraints and demand satisfaction based constraints with the possibility to add more equations if appropriate. Objective function for optimization is benefit-cost function. Optimal operation regimes for typical days for each month are obtained and analyzed. Impact of electrical energy price on pay-back period and primary energy saving is analyzed. Primary energy savings are determined and compared to maximal value that could be obtained.


Author(s):  
Mohammad Omar Temori ◽  
František Vranay

In this work, a mini review of heat pumps is presented. The work is intended to introduce a technology that can be used to income energy from the natural environment and thus reduce electricity consumption for heating and cooling. A heat pump is a mechanical device that transfers heat from one environmental compartment to another, typically against a temperature gradient (i.e. from cool to hot). In order to do this, an energy input is required: this may be mechanical, electrical or thermal energy. In most modern heat pumps, electrical energy powers a compressor, which drives a compression - expansion cycle of refrigerant fluid between two heat exchanges: a cold evaporator and a warm condenser. The efficiency or coefficient of performance (COP), of a heat pump is defined as the thermal output divided by the primary energy (electricity) input. The COP decreases as the temperature difference between the cool heat source and the warm heat sink increases. An efficient ground source heat pump (GSHP) may achieve a COP of around 4. Heat pumps are ideal for exploiting low-temperature environmental heat sources: the air, surface waters or the ground. They can deliver significant environmental (CO2) and cost savings.


2020 ◽  
Vol 190 ◽  
pp. 00032
Author(s):  
Rapha Nichita Kaikatui ◽  
Adik Putra Andika ◽  
Vinsenius Letsoin ◽  
Paulus Mangera ◽  
Damis Hardiantono ◽  
...  

Energy demand increases in line with rapid technological advances. Research on the harvesting of renewable energy continues to be done to make efforts to convert heat energy, which is very abundant in our daily environment. Thermoelectric technology is an alternative source in answering energy needs and can produce energy on a large and small scale. Thermoelectric technology works by converting heat energy into electricity directly, or from electricity to cold. This research presents an experimental study conducted to find out the thermoelectric characteristics of the TEC in the reversal function, with heating and cooling tests on each side of the TEC type thermoelectric element, carried out to obtain the voltage value as the electrical potential generated from this element. The result is thermoelectric potential to generate DC electricity but is very limited in the function of maintaining a heat source on the hot side element. This research then proposes thermal metamaterial that functions as a collector of thermal energy in the method of converting thermal energy into DC electrical energy for the application of low power consumption communication systems.


2014 ◽  
Vol 508 ◽  
pp. 236-242 ◽  
Author(s):  
Dao Jiu Hu

Ecological and environmental governance is vital to global sustainability. The role of energy saving in achieving CO2 emissions reductions is known to be important for environment protection . PPPs governance in DEG can be considered key to driving down traditional energy demand and hence CO2 emissions in the coming sustainable economy. Over the coming decade, Centralized Energy Generation (CEG) will decline relative to Distributed Energy Generation (DEG) such as solarphotovolatic, microturbines, fuel cells, combined heat and power and variety of renewable energy. This shift promises to improve power reliability, deliver cleaner power and avoid significant investments in transmission infrastructure. As an integrated hybrid governance system of sustainability, PPPs enjoys high efficiency of governance via collective efforts of multi-agents involved. In order to promote the governance quality of DEG, it is of importance to harness the advantages of integration of PPPs Governance in DEG project. This paper examined PPPs governance in order to improve efficiency of Distributed Energy Generation, it firstly briefly outlines the profile of PPPs, then illustrates the essentials of good PPPs governance in global DEG governance context. Finally, it draws the conclusion that how to ensure the efficiency of PPPs in collective governance of DEG projects.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4613 ◽  
Author(s):  
Yifang Tang ◽  
Zhiqiang Liu ◽  
Lan Li

The distributed energy system (DES) has increasingly attracted considerable attention from researchers due to its environmental friendliness and high efficiency. In the hot summer and cold winter areas, DES is an efficient alternative for district cooling and heating. A case study located in Changsha, China, which is a typical hot summer and cold winter area, is analyzed. Four control strategies are proposed in this study. The four cases under different control strategies are compared in terms of energy, economy, environment, solar fraction, and soil annual heat imbalance rate. Results show that the DES can be an energy saving and environmentally friendly alternative. The primary energy saving (PES) is more than 36.70% and can reach up to 48.04%, whereas DES can realize economical operation and reduce the emission of carbon dioxide, sulphur dioxide, and dust. In addition, DES consumes more electricity and less natural gas than the conventional energy system. These features are beneficial to the optimization of China’s energy consumption structure. Moreover, the operation of seasonal thermal storage for the ground soil is effective in maintaining the balance of soil annual heat. The control strategy combining geothermal and solar energies is recommended due to its good performance and high flexibility. This study may provide guidance in the development of DESs in hot summer and cold winter climate zones.


2014 ◽  
Vol 1 (2) ◽  
pp. 48 ◽  
Author(s):  
Giovanni Angrisani ◽  
Carlo Roselli ◽  
Maurizio Sasso ◽  
Peter Tzscheutschler

Microcogeneration can guarantee sensible primary energy savings and greenhouse gas emissions reductions in the residential sector. In this paper, the results of experimental tests carried out on a microcogenerator (5.5 kW electric power and 14.8 kW thermal power) based on a natural gas fuelled internal combustion engine, integrated with a condensing boiler, have been analyzed. Tests have been performed out at Institute for Energy Economy and Application Technology (IfE) of Technical University of Munich (Germany). The test facility allowed to simulate the thermal energy requirements of a real residential application, represented by a Multi Family House consisting of 10 apartments, and to evaluate the energy flows of the conversion devices in actual operating conditions. Four type days, characteristic of Mediterranean climatic conditions, have been used to define space heating and domestic hot water user’s requirements. Experimental tests have been performed to implement energy and environmental analysis, comparing the system consisting of cogenerator and integration boiler with a reference system. Results showed that the former can achieve a primary energy saving of about 6%, and CO2 equivalent emissions reduction of about 12%. Finally, the algorithm defined by the European Directive on the promotion of high efficiency cogeneration has been implemented; it demonstrated that the primary energy saving is well above the limit value prescribed by the Directive. Therefore the cogeneration plant can access support mechanisms that can help to achieve the economic feasibility of the system, besides energy and environmental benefits.


Sign in / Sign up

Export Citation Format

Share Document