scholarly journals Economic Analysis of an Integrated Anthropogenic Carbon Dioxide Network for Capture and Enhanced Oil Recovery Along the Texas Gulf Coast

Author(s):  
Carey W. King ◽  
Gu¨rcan Gu¨len ◽  
Joseph Essandoh-Yeddu ◽  
Susan Hovorka

This paper explains the system economics of an example integrated network that uses anthropogenic CO2 from Texas Gulf Coast fossil power plants for enhanced oil recovery (EOR). These CO2 sources and sinks are connected via a pipeline network. A discounted cash flow model indicates that for all candidate oil fields that require less than an estimated $10/BBL in EOR capital expenditure, all three entities (CO2 capture, pipelines, and EOR operators) can have 20% internal rate of return at $55 per tonne of CO2 and $56 per barrel of oil. These results include no existing or future tax incentives, and there are some costs not yet included. However, a Monte Carlo analysis shows insight by indicating that the total system rate of return is most sensitive to oil production parameters. Oil price and estimated amount of recoverable oil are the most positively influential factors while the EOR capital cost is the most negatively sensitive factor. The capital costs of capture and CO2 price are less sensitive, both negatively affecting rate of return.

2018 ◽  
Author(s):  
Muhammad Khalil

Indonesia memiliki power plants yang tersebar di berbagai daerah baik milik PLN ataupun perusahaan swasta (Non PLN). Setiap perusahaan akan mengemisikan Karbon dioksida (CO2) dari hasil pembakaran pada power plant. Sebagai suatu polutan, CO2 memiliki potensi untuk digunakan pada proses industri seperti Enhanced Oil Recovery (EOR). CO2 EOR merupakan suatu usaha meningkatkan produksi minyak dengan cara injeksi CO2 ke dalam suatu sumur produksi tahap tersier. CO2 EOR dapat diterapkan di Indonesia dikarenakan terdapat beberapa power plants (sources) dan perusahaan minyak (sinks), khususnya di Jawa Timur. Hal ini memungkinkan untuk dapat mendistribusikan CO2 dari sources menuju sinks menggunakan perpipaan. Akan tetapi untuk mengaplikasikannya, dibutuhkan biaya (cost) CO2 captured, perpipaan, dan fasilitas EOR. Cost tersebut bergantung pada jumlah CO2 yang dialirkan, jarak dan teknologi yang digunakan, sehingga dibutuhkan optimisasi dikarenakan adanya variasi jumlah CO2 dan jarak. Dalam hal ini variabel optimisasi yaitu jalur perpipaan dan mass flowrate CO2 captured. Terdapat tujuh CO2 sources dengan kapasitas dan lokasi yang berbeda. Selain itu, terdapat tujuh sinks dengan kebutuhan injeksi CO2 yang berbeda pula. Hasil optimisasi menunjukkan CAPEX dan OPEX minimal. Nilai CAPEX dan OPEX setiap source bergantung pada jarak antara source dan sink beserta jumlah mass flowrate CO2 yang didistribusikan. Adapun source CO2 yang terpilih yaitu source 1,3,4 dan 7. Source yang tersisa (2, 5


Energy ◽  
2020 ◽  
Vol 206 ◽  
pp. 118161
Author(s):  
Juan D. Arroyave ◽  
Farid Chejne ◽  
Juan M. Mejía ◽  
Juan C. Maya

2012 ◽  
Author(s):  
Chad Knutson ◽  
Seyed A. Dastgheib ◽  
Yaning Yang ◽  
Ali Ashraf ◽  
Cole Duckworth ◽  
...  

2016 ◽  
Author(s):  
Simiyu E. Lilian ◽  
Sandra Konez

ABSTRACT Fossil fuel combustion supplies more than 85% of energy for industrial activities and thus it is the main source of greenhouse gases in the form of CO2. This is expected to remain unchanged for a long time as the world energy consumption doubles. Renewable energy is often a better option since it is environmental friendly but its technologies are not financially available for most countries. Carbon (iv)oxide capture and sequestration (CCS) is necessary for meaningful greenhouse gases reduction in the immediate future. CCS could reduce emissions by 19%. This is an important bridge between our lifestyle and an environmental friendly world. The components of CCS system include; capture (separation and compression), transport, injection and finally monitoring. Power plants which are gas and coal fired are the main source of CO2. Other candidate sources include; cement production plants, refineries, petrochemical industries, oil and gas processing firms and natural gas wells The methods of capturing CO2 are pre-combustion, post-combustion and oxy-combustion/oxy-fuel. Possible sequestration places for the captured CO2 include; geological storage, for example depleted oil and gas reservoir, enhanced oil recovery, un-minable coal seams and deep saline formations, ocean storage, mineral carbonation and algal growth. Each of the methods above have their advantages and shortcomings as discussed in the research paper. CO2 can be utilized in various ways like, conversion into renewable fuels, formic acid, syngas, methane and methanol, utilizing CO2 as a feedstock for organic and inorganic carbonates, urea and biodegradable polymers as well as non-conversion use of CO2 for example as a geothermal fluid, used in enhanced oil recovery and beverage making. The challenges of CCS are; high cost of capture transport and injection, environmental and safety, subsurface uncertainty, legal and regulatory issues. Trappings contribute to storage of CO2 in a site. They include; Structural and stratigraphic, residual, solubility, mineral trappings. In conclusion, an approach that integrates different methods of capture and storage of CO2 may be a practical solution for CCS.


Sign in / Sign up

Export Citation Format

Share Document