Configuration Design and Energy Balancing of Compact-Hybrid Powertrains

Author(s):  
Paul D. Walker ◽  
Holger M. Roser

The development of compact and efficient hybrid electric vehicle powertrains for low initial and on-going costs requires consideration of numerous, often competing factors. Appropriately designing and sizing these powertrains requires the consideration of requirements for vehicle range and performance, considered directly through the sizing of motors and engines, and indirectly through minimization of vehicle mass whilst being constrained by total stored energy in the vehicle, against the impact on vehicle emissions and on purchase and ongoing operational costs. In addition to these considerations the actual driver use will strongly influence the energy consumed and vehicle emissions. It therefore becomes beneficial to provide flexibility in hybrid vehicle configuration design to enable the minimization of vehicle emissions and ongoing vehicle costs. The purpose of this paper is to study the various alternative vehicle powertrain configurations for application to small scale hybridization demands, such as scooters or motorcycles. Powertrain configurations studied in this paper include plug-in hybrid electric (PHEV), battery hybrid electric (BHEV), and a pure electric vehicle (PEV). To design and size each of the configurations a statistical approach is taken, power and load demands are studied and utilized to size powertrain components. Results are extended to size vehicle energy storage for electric only range of 25, 50 and 100 km, and total vehicle range of 100 km for the BHEV and 200 km for the PHEV. Based on the results developed from the analysis mathematical models of each of the powertrain configurations are then developed in Matlab/Simulink and numerical studies of vehicle energy consumption in comparison to range are conducted. Outcomes of these simulations are compared to an operating cost based analysis of the suggested powertrains; the benefits and limitations of each design are considered in detail.

2015 ◽  
Author(s):  
Zhafir Aizat Husin ◽  
Erwan Sulaiman ◽  
Faisal Khan ◽  
Mohamed Mubin Aizat Mazlan ◽  
Syed Muhammad Naufal Syed Othman

2000 ◽  
Author(s):  
Michael Ogburn ◽  
Douglas J. Nelson ◽  
William Luttrell ◽  
Brian King ◽  
Scott Postle ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096262
Author(s):  
Yupeng Zou ◽  
Ruchen Huang ◽  
Xiangshu Wu ◽  
Baolong Zhang ◽  
Qiang Zhang ◽  
...  

A power-split hybrid electric vehicle with a dual-planetary gearset is researched in this paper. Based on the lever analogy method of planetary gearsets, the power-split device is theoretically modeled, and the driveline simulation model is built by using vehicle modeling and simulation toolboxes in MATLAB. Six operation modes of the vehicle are discussed in detail, and the kinematic constraint behavior of power sources are analyzed. To verify the rationality of the modeling, a rule-based control strategy (RB) and an adaptive equivalent consumption minimization strategy (A-ECMS) are designed based on the finite state machine and MATLAB language respectively. In order to demonstrate the superiority of A-ECMS in fuel-saving and to explore the impact of different energy management strategies on emission, fuel economy and emission performance of the vehicle are simulated and analyzed under UDDS driving cycle. The simulation results of the two strategies are compared in the end, shows that the modeling is rational, and compared with RB strategy, A-ECMS ensures charge sustaining better, enables power sources to work in more efficient areas, and improves fuel economy by 8.65%, but significantly increases NOx emissions, which will be the focus of the next research work.


Author(s):  
Aree Wangsupphaphol ◽  
Nik Rumzi Nik Idris ◽  
Awang Jusoh ◽  
Nik Din Muhamad ◽  
Supanat Chamchuen

The paper presents a new control strategy and design for auxiliary energy source (AES) used in battery hybrid electric vehicle (BHEV) based on the acceleration power. The control strategy takes actual speed and acceleration of the vehicle and system losses into account for regulating the energy and power supply to the propulsion load. The design of AES and its dynamic control design are demonstrated. Cascade control is availed in this work in order to control the terminal voltage and current of supercapacitors (SCs). The benefits of AES in which recapture of regenerative braking energy are examined by the numerical simulation and verified by a small scale experiment. The comparison of energy consumption and DC bus voltage regulation between pure battery and battery with supercapacitors (BSCs) propulsion system declares the theoretical results and confirms the benefits of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document