Wind Tunnel Experiments on How a Porous Fence Affects Flow and Erosion on Sand Dune

Author(s):  
Daisuke Aoshima ◽  
Itsuki Nakamura ◽  
Yusuke Sakamoto ◽  
Takahiro Tsukahara ◽  
Makoto Yamamoto ◽  
...  

For the purpose of combating desertification, it is important to understand mechanisms of the wind-blown sand movement, which is essentially a complicated two-phase flow phenomenon of sand particles and air. Therefore, we investigated the flow field around a model dune and the erosion process of the dune. In this study, we employed a porous fence, which was installed on the model dune, and examined its effect on the sand movement. The erosion process and its relationship with the turbulent intensity and the flow around the dune were discussed focusing on dependence of the flow field on the fence porosity. We tested four types of porous fences, which had different porosities: 0% (no permeability), 10%, 30%, and 50%. How a position of the fence affects suppression of the dune erosion was also examined. In the present experimental range, it can be concluded that the most effective fence position to suppress the sand movement should depend on porosity of the fence.

2004 ◽  
Author(s):  
Gary Luke ◽  
Mark Eagar ◽  
Michael Sears ◽  
Scott Felt ◽  
Bob Prozan

2014 ◽  
Vol 541-542 ◽  
pp. 1288-1291
Author(s):  
Zhi Feng Dong ◽  
Quan Jin Kuang ◽  
Yong Zheng Gu ◽  
Rong Yao ◽  
Hong Wei Wang

Calculation fluid dynamics software Fluent was used to conduct three-dimensional numerical simulation on gas-liquid two-phase flow field in a wet flue gas desulfurization scrubber. The k-ε model and SIMPLE computing were adopted in the analysis. The numerical simulation results show that the different gas entrance angles lead to internal changes of gas-liquid two-phase flow field, which provides references for reasonable parameter design of entrance angle in the scrubber.


2011 ◽  
Vol 418-420 ◽  
pp. 2006-2011
Author(s):  
Rui Zhang ◽  
Cheng Jian Sun ◽  
Yue Wang

CFD simulation and PIV test technology provide effective solution for revealing the complex flow of hydrodynamic coupling’s internal flow field. Some articles reported that the combination of CFD simulation and PIV test can be used for analyzing the internal flow field of coupling, and such analysis focuses on one-phase flow. However, most internal flow field of coupling are gas-fluid two-phase flow under the real operation conditions. In order to reflect the gas-fluid two-phase flow of coupling objectively, CFD three-dimensional numerical simulation is conducted under two typical operation conditions. In addition, modern two-dimensional PIV technology is used to test the two-phase flow. This method of combining experiments and simulation presents the characteristics of the flow field when charging ratios are different.


2011 ◽  
Vol 130-134 ◽  
pp. 3644-3647
Author(s):  
Ding Feng ◽  
Si Huang ◽  
Yu Hui Guan ◽  
Wei Guo Ma

This work performs an oil-water two-phase flow simulation in a downhole Venturi meter to investigate the flow field and pressure characteristics with different flow and oil-water ratios. The relation between the pressure drop and the feed flow rate in the flowmeter is investigated for its optimal design.


2013 ◽  
Vol 712-715 ◽  
pp. 1253-1258
Author(s):  
Hai Feng Xue ◽  
Xiong Chen ◽  
Yong Ping Wang ◽  
Ya Zheng

The two-dimension axisymmetric and two-phase flow in a full-size solid rocket motor with submerged nozzle under high acceleration condition has been simulated with Euler-Lagrange model. Without acceleration and under high axial acceleration on particle trajectories, the influences of different particle diameters were analyzed. The difference between gas flow field and two-phase flow field is significant. The particle accumulation zone above the inner wall of chamber and nozzle is mainly concentrated in two regions. The axial acceleration will intensify the impaction to the end of the chamber. The accretion of the particle phase diameter will increase the inertia of the particle phase, which may cause the following property worse, and the particles can easily form a highly-concentrated aggregation flow.


2005 ◽  
Vol 127 (4) ◽  
pp. 479-486
Author(s):  
Bin Liu ◽  
Mauricio Prado

For any pumping artificial lift system in the petroleum industry, the free gas significantly affects the performance of the pump and the system above the pump. A model, though not a complete two-phase flow model, has been developed for the effective prediction of separation efficiency across a wide range of production conditions. The model presented is divided into two main parts, the single-phase flow-field solution and the bubble-tracking method. The first part of the model solves the single-phase liquid flow field using the computational fluid dynamics approach. Then, a simple bubble-tracking method was applied to estimate the down-hole natural separation efficiency for two-phase flow. A comparison between the results of the model and the experimental data was conducted. It shows a very good agreement with the experimental data for lower gas void fractions (bubble flow regime).


2001 ◽  
Vol 204 (1-3) ◽  
pp. 57-67 ◽  
Author(s):  
Kyung Ho Cho ◽  
Sin Kim ◽  
Yoon Joon Lee

Sign in / Sign up

Export Citation Format

Share Document