Characterization of Switching Time and Cell Stress in a Gravity-Driven Microfluidic Cell Sorter Based on Hydrodynamic Switching

Author(s):  
Michael Grad ◽  
Lubomir Smilenov ◽  
David Brenner ◽  
Daniel Attinger

In this work we describe the control and characterization of the switching time and hydrodynamic stress in a microfluidic cell sorter. The device was designed to sort small (<1000) populations of live cells in buffer solution labeled with standard bio-markers such as live dyes or green fluorescent protein (GFP). Sorting occurs through a hydrodynamic switching technique where high-speed solenoid valves control a sheath flow used to steer sorted cells away from the unsorted bulk population. The device is constructed from a reusable hard plastic polymethylmethacrylate (PMMA) chip machined with 127μm × 50μm microchannels and sealed with adhesive tape. Open reservoirs in the chip facilitate pipette access, standard microscope visualization, and a simple disassembly and cleaning procedure. The sorting frequency of this type of device is typically limited by the hydrodynamic switching time. Here, we present a theoretical and numerical analysis of the device switching time. These results show that the sorter switching time t is practically limited by the velocity of the flow and the characteristic length between inlet and outlet channels. We validate this theoretical result with experimental data obtained from flow visualizations, along with experiments conducted to evaluate the repeatability of the hydrodynamic switching scheme and the survival rate of sorted fibroblast cells Manually operated, the sorting frequencies were approximately 10 cells per minute, with switching time constants of approximately 130ms. Current throughput is limited by this switching time to approximately 450 cells per minute. Automation can increase the velocity and reduce the spacing between cells, thereby increasing throughput by at least an order of magnitude. The cell sorter was then tested by manually sorting 100 beads in 7 minutes, and 30 cells in less than 3 minutes, and was successfully used in the framework of a study on the bystander effect occurring during cell irradiation. Experiments with Trypan Blue dye verified that cell viability was maintained during the sorting process.

Lab on a Chip ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 3880-3887 ◽  
Author(s):  
Yufeng Zhao ◽  
Wei Zhang ◽  
Yongxin Zhao ◽  
Robert E. Campbell ◽  
D. Jed Harrison

We introduce a single-phase flow microfluidic cell sorter with a two-point detection system capable of two-parameter screening to assist with directed evolution of a fluorescent protein based Ca2+ sensor expressed in bacterial cells.


2015 ◽  
Vol 24 (10) ◽  
pp. 108506
Author(s):  
Qing-Tao Chen ◽  
Yong-Qing Huang ◽  
Jia-Rui Fei ◽  
Xiao-Feng Duan ◽  
Kai Liu ◽  
...  

2013 ◽  
Vol 726-731 ◽  
pp. 2960-2963
Author(s):  
Ai Hui Liang ◽  
Dong Qin Han ◽  
Hui Yue Gan ◽  
Zhi Liang Jiang

In this paper, the effect of Fe3O4nanoparticle catalytic degradation brilliant blue X-BR dye was studied using spectrophotometric method. It was found that in the media of pH 0.65 HCl-NaAc buffer solution, 100 μmol/L H2O2, 0.7 g/L Fe3O4nanoparticle and the temperature 25°C, the degradation rate for reactive brilliant blue X-BR was over 93.5% in 20 min under the optimal conditions.


Sign in / Sign up

Export Citation Format

Share Document