Analysis of Unsteady Flow Around Airfoil of a HAWT by Vortex Method

Author(s):  
Hiroshi Imamura ◽  
Daisuke Takezaki ◽  
Masahiro Kawai ◽  
Yutaka Hasegawa ◽  
Koji Kikuyama

Vortex methods have features such as relatively simple algorithm, no grid-generation in flow field and lagrangian scheme which traces each vortex element concentrated in a tiny region. It is considered that the vortex methods are effective tools for the analysis of three-dimensional, incompressible and unsteady outer flow such as flow around wind turbines. Recently, vortex methods are employed as engineering tools for three-dimensional unsteady flow. In a flow simulation by vortex methods, accuracy of simulation depends chiefly on the vortex creation model on the wall and the viscous diffusion effects. However, it seems that the deterministic model to introduce the vortex element created on the wall into flow field has not yet been accomplished. In this paper, an introduction model of vortex elements from the wall into flow field is proposed. This model is based on the analogy of the consideration of boundary-layer. In this model, intensity of vortex elements created on the wall is determined by applying both no-through and no-slip boundary conditions and the diffusion height of each element created on the wall is determined dynamically. To investigate the applicability of the model, proposed method is applied to flow around impulsively started airfoil section.

1992 ◽  
Vol 114 (1) ◽  
pp. 79-90 ◽  
Author(s):  
O. P. Sharma ◽  
G. F. Pickett ◽  
R. H. Ni

The impacts of unsteady flow research activities on flow simulation methods used in the turbine design process are assessed. Results from experimental investigations that identify the impact of periodic unsteadiness on the time-averaged flows in turbines and results from numerical simulations obtained by using three-dimensional unsteady Computational Fluid Dynamics (CFD) codes indicate that some of the unsteady flow features can be fairly accurately predicted. Flow parameters that can be modeled with existing steady CFD codes are distinguished from those that require unsteady codes.


Author(s):  
Mou-jin Zhang ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in a centrifugal impeller with low speed is studied in this paper. Coupled with high–Reynolds–number k–ε turbulence model, the fully three–dimensional Reynolds averaged Navier–Stokes equations are solved. The Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) algorithm is used. And the non–staggered grid arrangement is also used. The computed results are compared with the available experimental data. The comparison shows good agreement.


Author(s):  
Kyoji Kamemoto ◽  
Akira Ojima

This paper describes a pioneering work of practical application of an advanced vortex method in the field of fluid dynamics in sports science. The vortex method developed by the present authors is one of vortex element methods based on the Biot-Savart law, and it is known that the method provides a Lagrangian simulation of unsteady and vortical flows. In this study, in order to examine the applicability of the vortex method, three-dimensional, complex and unsteady flows around an isolated 100 m runner and a ski-jumper were calculated. Basic equations and mathematical treatment of the method are explained in this paper, and calculation conditions and panel data of deforming configuration of the athletes are described. As results of the present study, vortical and unsteady flow features around a runner and a ski-jumper are understood, and unsteady variation of aerodynamic forces corresponding to deformation of body configuration due to athletic motion are calculated. And, it is confirmed that the advanced vortex element method is a promising way to a grid-free Lagrangian large eddy simulation of unsteady and complex flows around dynamic bodies of athletes.


Author(s):  
Yoshifumi Ogami ◽  
Kazuie Nishiwaki ◽  
Yoshinobu Yoshihara

First, a simple and accurate numerical method is presented to produce velocity fluctuations that are determined by the prescribed physical quantities and qualities of turbulence such as longitudinal and lateral spectra, and integral scales. The fluctuations are obtained by solving a system of nonlinear equations that are derived from the equations of energy spectra and of root mean square of the fluctuations. This method requires as many computer memories and computations as one-dimensional case even for the three dimensional calculations. It is shown that there is a strong resemblance of the simulated velocity fluctuations and experimental data. The energy spectra of these velocity fluctuations are quite accurate with less than 0.01% relative errors to the prescribed spectra. Secondly, these solutions are used to examine the capability of the vortex methods to produce turbulent flows with the prescribed parameters. It is found that although the energy spectra by the vortex method scatter to some extent, they are distributed along the prescribed spectra. It can be said that the vortex methods are able to simulate the target turbulence fairly well. Also it is found that the solutions with the LES model increase and deviate from the target spectrum at the higher frequency regions. This may suggest the nonessentiality of the LES model for the vortex method.


2014 ◽  
Vol 1008-1009 ◽  
pp. 906-909
Author(s):  
Xiao Bing Wang

Unsteady flow of a single six-blade ruston turbine in stirred tank is numerically simulated by using the large eddy simulation. Then the effect of the turbine installation position on mixing flow field is studied. The result shows that with a relatively low paddle installation position, mixing effect at the bottom of tank is obvious, while which go against the materials at the top layer mixing. When the paddle is installed at the top of the stirred tank, liquid splash and a concave downward liquid surface are easily caused. Finally the cavitation phenomenon is generated. When the paddle is installed from 1/3H to 2/3H, there are a uniform flow field distribution and higher average velocity flow. Large size vortex structures at the top and the bottom of the paddle are obvious which is beneficial to mix the materials.


1995 ◽  
Author(s):  
S. Fan ◽  
B. Lakshminarayana

The objective of this paper is to investigate the three dimensional unsteady flow interactions in a turbomachine stage. A three-dimensional time accurate Euler code has been developed using an explicit four-stage Runge-Kutta scheme. Three-dimensional unsteady non-reflecting boundary conditions are formulated at the inlet and at the outlet of the computational domain to remove the spurious numerical reflections. The three-dimensional code is first validated for 2-D and 3-D cascades with harmonic vortical inlet distortions. The effectiveness of non reflecting boundary conditions is demonstrated. The unsteady Euler solver is then used to simulate the propagation of nozzle wake and secondary flow through rotor and the resulting unsteady pressure field in an axial turbine stage. The three dimensional and time dependent propagation of nozzle wakes in the rotor blade row and the effects of nozzle secondary flow on the rotor unsteady surface pressure and passage flow field are studied. It was found that the unsteady flow field in the rotor is highly three-dimensional and the nozzle secondary flow has significant contribution to the unsteady pressure on the blade surfaces. Even though the steady flow at the midspan is nearly two-dimensional, the unsteady flow is 3-D and the unsteady pressure distribution can not by predicted by a 2-D analysis.


Sign in / Sign up

Export Citation Format

Share Document