Investigation of Pseudo Turbulent Scalar Transport in Two Phase Fluid Flow and Passive Scalar Mixing Using Simultaneous SPIV/PLIF

Author(s):  
Mahdi Ramezani ◽  
Shankar Subramaniam ◽  
Michael G. Olsen

The presented work is focused on developing closure models for simulation of multiphase flow using multi-fluid models. In the two-fluid model, pseudo turbulent terms appear in both the heat transfer term in the energy equation and the mass transfer term in the species equation. These terms are often neglected due to lack of information, but recent studies show that they can indeed be significant in the simulation of the inter particle phenomena. In the present work, we experimentally investigate the importance of pseudo turbulent term in passive scalar transport. A simultaneous stereo particle image velocimetry and planar laser induced fluorescence (SPIV/PLIF) measurement of the field data for a liquid-solid flow is presented in this study. The results of this measurement are used to validate data from Particle Resolved DNS (PR-DNS) that in turn is used to develop the aforementioned closure models. In this work, results for a single sphere are presented for Reynolds number ranging from 50 to 150. In addition, results for arrays of spheres representing volume fractions of 0.1 and 0.2 are presented for the same range of Reynolds number.

2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

2013 ◽  
Author(s):  
Sung Chan Cho ◽  
Yun Wang

In this paper, two-phase flow dynamics in a micro channel with various wall conditions are both experimentally and theoretically investigated. Annulus, wavy and slug flow patterns are observed and location of liquid phase on different wall condition is visualized. The impact of flow structure on two-phase pressure drop is explained. Two-phase pressure drop is compared to a two-fluid model with relative permeability correlation. Optimization of correlation is conducted for each experimental case and theoretical solution for the flows in a circular channel is developed for annulus flow pattern showing a good match with experimental data in homogeneous channel case.


Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


Author(s):  
Hiroyuki Yoshida ◽  
Takeharu Misawa ◽  
Kazuyuki Takase

Two-fluid model can simulate two phase flow less computational cost than inter-face tracking method and particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system in order to simulate complex shape channel flow. In this paper, boiling two-phase flow analysis in a tight lattice rod bundle is performed by ACE-3D code. The parallel computation using 126CPUs is applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. At height z = 0.5 m, void fraction in the gap region is higher in comparison with that in center region of the subchannel. However, at height of z = 1.1m, higher void fraction distribution exists in center region of the subchannel in comparison with the gap region. The tendency of void fraction to concentrate in the gap region at vicinity of boiling starting point, and to move into subchannel as water goes through rod bundle, is qualitatively agreement with the measurement results by neutron radiography. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight lattice rod bundle with no lift force model (neglecting lift force acting on bubbles) is also performed. From the comparison of numerical results, it is concluded that the effects of lift force model are not so large on overall void fraction distribution in tight lattice rod bundle. However, higher void fraction distribution in center region of the subchannel was not observed in this simulation. It is concluded that the lift force model is important for local void fraction distribution in rod bundles.


Author(s):  
Wei Yao ◽  
Christophe Morel

In this paper, a multidimensional two-fluid model with additional turbulence k–ε equations is used to predict the two-phase parameters distribution in freon R12 boiling flow. The 3D module of the CATHARE code is used for numerical calculation. The DEBORA experiment has been chosen to evaluate our models. The radial profiles of the outlet parameters were measured by means of an optical probe. The comparison of the radial profiles of void fraction, liquid temperature, gas velocity and volumetric interfacial area at the end of the heated section shows that the multidimensional two-fluid model with proper constitutive relations can yield reasonably predicted results in boiling conditions. Sensitivity tests show that the turbulent dispersion force, which involves the void fraction gradient, plays an important role in determining the void fraction distribution; and the turbulence eddy viscosity is a significant factor to influence the liquid temperature distribution.


Author(s):  
Youn-Gyu Jung ◽  
Moon-Sun Chung ◽  
Sung-Jae Yi

This study discusses on the implementation of an upwind method for a one-dimensional two-fluid model including the surface tension effect in the momentum equations. This model consists of a complete set of six equations including two-mass, two-momentum, and two-internal energy conservation equations having all real eigenvalues. Based on this equation system with upwind numerical method, the present authors first make a pilot code and then solve some benchmark problems to verify whether this model and numerical method is able to properly solve some fundamental one-dimensional two-phase flow problems or not.


Author(s):  
E. Bruce Pitman ◽  
Long Le

Geophysical mass flows—debris flows, avalanches, landslides—can contain O (10 6 –10 10 ) m 3 or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged ‘thin layer’ model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a ‘two-phase’ or ‘two-fluid’ system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.


2003 ◽  
Vol 125 (2) ◽  
pp. 387-389 ◽  
Author(s):  
Jin Ho Song

A linear stability analysis is performed for a two-phase flow in a channel to demonstrate the feasibility of using momentum flux parameters to improve the one-dimensional two-fluid model. It is shown that the proposed model is stable within a practical range of pressure and void fraction for a bubbly and a slug flow.


Sign in / Sign up

Export Citation Format

Share Document