Effects of a Groove Patterned Cooling Tube on the Film Cooling Performance of a Gas Turbine Blade

Author(s):  
Yeon-Ho Lee ◽  
Youn-Jea Kim

A high working fluid temperature in a gas turbine is required to improve its efficiency. However, high temperatures also reduce turbine blade durability. Film-cooling is one blade cooling method to control gas turbine blade temperature. In this study, film cooling performance was numerically investigated with various configurations of a groove patterned cooling tube. The CO2 blowing ratio of the cooling fluid was varied from 0.6 to 1.4 with 0.2 intervals. The numerical analysis was conducted using the ANSYS CFX ver. 16.1 commercial code. The film cooling efficiency and pressure distribution were graphically depicted and analyzed to derive the groove configuration with the highest film cooling efficiency. In particular, the flow field on the turbine blade with the circular groove configuration showed more uniform distribution compared to the reference model.

2020 ◽  
Vol 32 (11) ◽  
pp. 117102
Author(s):  
Seyyed Mehdi Hosseini Baghdad Abadi ◽  
Saadat Zirak ◽  
Mehran Rajabi Zargarabadi

Author(s):  
Weihong Li ◽  
Xunfeng Lu ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Overall cooling effectiveness was determined for a full-coverage effusion cooled surface which simulated a portion of a double wall cooling gas turbine blade. The overall cooling effectiveness was measured with high thermal-conductivity artificial marble using infra-red thermography. The Biot number of artificial marble was matched to real gas turbine blade conditions. Blowing ratio ranged from 0.5 to 2.5 with the density ratio of DR = 1.5. A variation of cooling arrangements, including impingement-only, film cooling-only, film cooling with impingement and film cooling with impingement and pins, as well as forward/backward film injection, were employed to provide a systematic understanding on their contribution to improve cooling efficiency. Also investigated was the effect of reducing wall thickness. Local, laterally-averaged, and area-averaged overall cooling effectiveness were shown to illustrate the effects of cooling arrangements and wall thickness. Results showed that adding impingement and pins to film cooling, and decreasing wall thickness increase the cooling efficiency significantly. Also observed was that adopting backward injection for thin full-coverage effusion plate improves the cooling efficiency.


2021 ◽  
Vol 15 (1) ◽  
pp. 7637-7647
Author(s):  
E. Hosseini

One way to achieve high performance in the gas turbine is to increase the inlet temperature of the turbine. Different cooling techniques have been carried out in order to protect the turbine blades which have been exposed to such high temperatures. Film cooling as an essential cooling method needs to be enhanced to meet the challenging demand. The purpose of the present research is to analyze the film cooling performance over a NACA 0012 gas turbine blade using six different injection holes with and without opening angles, separately through Computational Fluid Dynamics (CFD). 2D Reynolds-Averaged Navier-Stokes (RANS) equations are implemented to consider the heat transfer and flow characteristics by using CFD code Ansys Fluent v16. The flow is considered as steady, turbulent, and incompressible. The RANS equation is solved with the finite-volume method for obtaining solutions. The simulation results revealed that the k-ω SST turbulence model is suitable for simulating the flow characteristics and analyzing the performance of film cooling over the blade. Also, the opening angle has a significant effect on increasing the cooling efficiency for the upper blade surface. The highest value of cooling efficiency is obtained by the injection hole with an opening angle of 15° and height of D. In this configuration, the coolant injected from hole provides better cooling coverage for the entire blade which increases the cooling effectiveness.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Weihong Li ◽  
Xunfeng Lu ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Overall cooling effectiveness was determined for a full-coverage effusion cooled surface which simulated a portion of a double wall cooling gas turbine blade. The overall cooling effectiveness was measured with high thermal-conductivity artificial marble using infrared thermography. The Biot number of artificial marble was matched to real gas turbine blade conditions. Blowing ratio ranged from 0.5 to 2.5 with the density ratio of DR = 1.5. A variation of cooling arrangements, including impingement-only, film cooling-only, film cooling with impingement, and film cooling with impingement and pins, as well as forward/backward film injection, was employed to provide a systematic understanding on their contribution to improve cooling efficiency. Also investigated was the effect of reducing wall thickness. Local, laterally averaged, and area-averaged overall cooling effectiveness were shown to illustrate the effects of cooling arrangements and wall thickness. Results showed that adding impingement and pins to film cooling, and decreasing wall thickness increase the cooling efficiency significantly. Also observed was that adopting backward injection for thin full-coverage effusion plate improves the cooling efficiency.


2010 ◽  
Vol 53 (23-24) ◽  
pp. 5232-5241 ◽  
Author(s):  
Cun-liang Liu ◽  
Hui-ren Zhu ◽  
Jiang-tao Bai ◽  
Du-chun Xu

Author(s):  
Hyun-Oh Kim ◽  
Hak-Sun Kim ◽  
Youn-Jea Kim

The gas turbine performance significantly depends on the temperature of working fluid. In order to improve the efficiency of gas turbine, it is required to increase turbine inlet temperature. However, the working fluid in high temperature conditions causes thermal stress which could damage turbine blades. One of the methods to require turbine blades by controlling the temperature of working fluid is a film-cooling method. In this study, cooling tubes with various aspect ratios of groove length (L/Lt) with groove diameter of d = 1.2 mm were considered to enhance the film cooling efficiency. In addition, effects of blowing ratios (M) and diffuser angles (δ) of the cooling tube were considered. Numerical investigations were conducted using ANSYS ver. 17.1, and film cooling efficiencies of each case were obtained. Especially, the case with groove length aspect ratio of L/Lt = 0.4 at blowing ratio M = 1.4 and diffuser angle δ = 3.5° showed the highest cooling efficiency of 18% among all model cases.


AIP Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 015333
Author(s):  
Xiaojian He ◽  
Haiwang Li ◽  
Guoqin Zhao ◽  
Ruquan You

2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


Sign in / Sign up

Export Citation Format

Share Document