Vortex Identification Study of a Turbulent Cavity Flow

Author(s):  
Khaled J. Hammad

A combined vortex identification and Proper Orthogonal Decomposition (POD) analysis is applied to high-resolution Particle Image Velocimetry (PIV) measurements of a turbulent flow past an open shallow cavity. The PIV measurements, at a cavity depth based Reynolds number of 42,000, capture the flow structure and turbulence, upstream, over, and downstream an open cavity having a length-to-depth ratio of four. Vorticity and second invariant Q of the velocity gradient tensor analysis are used to identify the vortical structures and the overall flow field features. POD analysis is applied to the vorticity and Q fields to identify the most energetic vortical structures and flow features. The results demonstrate the superiority of the combined Q-criterion and POD analysis in identifying distinct vortical structures and their evolution.

Author(s):  
F. Aloui ◽  
E. Berrich ◽  
D. Pierrat

This work presents an experimental and numerical investigation of a confined turbulent flow behavior across a conical diffuser (2α = 16°). The role of a perturbation caused by the presence of an elbow in the test-section, upstream of the progressive enlargement, was studied. The main measurements were the static pressure, and the instantaneous velocity fields using the Particle Image Velocimetry (PIV). Post-processing of these PIV measurements were adopted using the Γ2 criterion for the vortices detection, and the Proper Orthogonal Decomposition (POD) technique to extract the most energetic modes contained in the turbulent flow and to the turbulent flow filtering. A data base has been also constituted, and was used to test the validity of the most models of turbulence, and in particular, a variant of the SST model.


2012 ◽  
Vol 7 (2) ◽  
pp. 43-47
Author(s):  
Sergey Abdurakipov ◽  
Vladimir Dulin ◽  
Dmitriy Markovich

An experimental study of 3D spatial structure of large-scale vortices in a strongly swirling turbulent jet was performed by using Particle Image Velocimetry (PIV) method and Proper Orthogonal Decomposition (POD) analysis


2011 ◽  
Vol 133 (1) ◽  
Author(s):  
F. Aloui ◽  
E. Berrich ◽  
D. Pierrat

In some industrial processes, and especially in agrofood industries, the cleaning in place mechanism used for hydraulic circuits plays an important role. This process needs a good knowledge of the hydrodynamic flows to determinate the appropriate parameters that assure a good cleaning of these circuits without disassembling them. Generally, different arrangements are present in these hydraulic circuits, such as expansions, diffusers, and elbows. The flow crossing these singularities strongly affects the process of cleaning in place. This work is then a contribution to complete recent studies of “aliments quality security” project to ameliorate the quality of the cleaning in place. It presents experimental and numerical investigations of a confined turbulent flow behavior across a conical diffuser (2α=16 deg). The role of a perturbation caused by the presence of an elbow in the test section, upstream of the progressive enlargement, was studied. The main measurements were the static pressure and the instantaneous velocity fields using the particle image velocimetry (PIV). Post-processing of these PIV measurements were adopted using the Γ2 criterion for the vortices detection and the proper orthogonal decomposition (POD) technique to extract the most energetic modes contained in the turbulent flow and to the turbulent flow filtering. A database has been also constituted and was used to test the validity of the most models of turbulence, and in particular, a variant of the shear stress transport (SST) model.


2005 ◽  
Vol 4 (1-2) ◽  
pp. 93-115 ◽  
Author(s):  
Jérôme Boudet ◽  
Nathalie Grosjean ◽  
Marc C. Jacob

A large-eddy simulation is carried out on a rod-airfoil configuration and compared to an accompanying experiment as well as to a RANS computation. A NACA0012 airfoil (chord c = 0.1 m) is located one chord downstream of a circular rod (diameter d = c/10, Red = 48 000). The computed interaction of the resulting sub-critical vortex street with the airfoil is assessed using averaged quantities, aerodynamic spectra and proper orthogonal decomposition (POD) of the instantaneous flow fields. Snapshots of the flow field are compared to particle image velocimetry (PIV) data. The acoustic far field is predicted using the Ffowcs Williams & Hawkings acoustic analogy, and compared to the experimental far field spectra. The large-eddy simulation is shown to accurately represent the deterministic pattern of the vortex shedding that is described by POD modes 1 & 2 and the resulting tonal noise also compares favourably to measurements. Furthermore higher order POD modes that are found in the PIV data are well predicted by the computation. The broadband content of the aerodynamic and the acoustic fields is consequently well predicted over a large range of frequencies ([0 kHz; 10 kHz]).


2005 ◽  
Author(s):  
R. E. Foster ◽  
T. A. Shedd

A novel technique of microscopic Particle Image Velocimetry (PIV) is presented for two-phase annular, wavy-annular and stratified flow. Seeding of opaque particles in a water/dye flow allows the acquisition of instantaneous film velocity data in the film cross-section at the center of the tube in the form of digital image pairs. An image processing algorithm is also described that allows numerical velocities to be distilled from particle images by commercial PIV software. The approach yields promising results for stratified and wavy-annular flows, however highly bubbly flows remain difficult to image and post-process. Initial data images are presented in raw and processed form.


Author(s):  
Jianjun Feng ◽  
Friedrich-Karl Benra ◽  
Hans Josef Dohmen

The truly time-variant unsteady flow in a low specific speed radial diffuser pump stage has been investigated by time-resolved Particle Image Velocimetry (PIV) measurements. The measurements are conducted at the midspan of the blades for the design condition and also for some severe part-load conditions. The instantaneous flow fields among different impeller channels are analyzed and compared in detail, and more attention has been paid to flow separations at part-load conditions. The analysis of the measured results shows that the flow separations at two adjacent impeller channels are quite different at some part-load conditions. The separations generally exhibit a two-channel characteristic.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Petter Ekman ◽  
James Venning ◽  
Torbjörn Virdung ◽  
Matts Karlsson

Abstract The Ahmed body is one of the most well-investigated vehicle bodies for aerodynamic purposes. Despite its simple geometry, the flow around the body, especially at the rear, is very complex as it is dominated by a large wake with strong interaction between vortical structures. In this study, the flow around the 25 deg Ahmed body has been investigated using large eddy simulations and compared to high-resolution particle image velocimetry (PIV) measurements. Special emphasis was put on studying three commonly used sub-grid scale (SGS) models and their ability to capture vortical structures around the Ahmed body. The ability of the SGS models to capture the near-wall behavior and small-scale dissipation is crucial for capturing the correct flow field. Very good agreement between simulations and PIV measurements were seen when using the dynamic Smagorinsky-Lilly and the wall-adopting local eddy-viscosity SGS models, respectively. However, the standard Smagorinsky-Lilly model was not able to capture the flow patterns when compared to the PIV measurements due to shortcomings in the near-wall modeling in the standard Smagorinsky-Lilly model, resulting in overpredicted separation.


2016 ◽  
Vol 801 ◽  
Author(s):  
Adam M. Edstrand ◽  
Timothy B. Davis ◽  
Peter J. Schmid ◽  
Kunihiko Taira ◽  
Louis N. Cattafesta

The mechanism of trailing vortex wandering has long been debated and is often attributed to either wind-tunnel effects or an instability. Using particle image velocimetry data obtained in the wake of a NACA0012 airfoil, we remove the effect of wandering from the measured velocity field and, through a triple decomposition, recover the coherent wandering motion. Based on this wandering motion, the most energetic structures are computed using the proper orthogonal decomposition (POD) and exhibit a helical mode with an azimuthal wavenumber of $|m|=1$ whose kinetic energy grows monotonically in the downstream direction. To investigate the nature of the vortex wandering, we perform a spatial stability analysis of a matched Batchelor vortex. The primary stability mode is found to be marginally stable and nearly identical in both size and structure to the leading POD mode. The strikingly similar structure, coupled with the measured energy growth, supports the proposition that the vortex wandering is the result of an instability. We conclude that the cause of the wandering is the non-zero radial velocity of the $|m|=1$ mode on the vortex centreline, which acts to transversely displace the trailing vortex, as observed in experiments. However, the marginal nature of the stability mode prevents a definitive conclusion regarding the specific type of instability.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
A.-M. Shinneeb ◽  
R. Balachandar ◽  
J. D. Bugg

This paper investigates an isothermal free water jet discharging horizontally from a circular nozzle (9mm) into a stationary body of water. The jet exit velocity was 2.5m∕s and the exit Reynolds number was 22,500. The large-scale structures in the far field were investigated by performing a proper orthogonal decomposition (POD) analysis of the velocity field obtained using a particle image velocimetry system. The number of modes used for the POD reconstruction of the velocity fields was selected to recover 40% of the turbulent kinetic energy. A vortex identification algorithm was then employed to quantify the size, circulation, and direction of rotation of the exposed vortices. A statistical analysis of the distribution of number, size, and strength of the identified vortices was carried out to explore the characteristics of the coherent structures. The results clearly reveal that a substantial number of vortical structures of both rotational directions exist in the far-field region of the jet. The number of vortices decreases in the axial direction, while their size increases. The mean circulation magnitude is preserved in the axial direction. The results also indicate that the circulation magnitude is directly proportional to the square of the vortex radius and the constant of proportionality is a function of the axial location.


Sign in / Sign up

Export Citation Format

Share Document