Machine Learning Approach to Predict the Flow Rate for an Immiscible Two-Phase Flow at Pore Scale for Enhanced Oil Recovery Application

Author(s):  
Arturo Rodriguez ◽  
V. M. Krushnarao Kotteda ◽  
Luis F. Rodriguez ◽  
Vinod Kumar ◽  
Arturo Schiaffino ◽  
...  

Due to global demand for energy, there is a need to maximize oil extraction from wet reservoir sedimentary formations, which implies the efficient extraction of oil at the pore scale. The approach involves pressurizing water into the wetting oil pore of the rock for displacing and extracting the oil. The two-phase flow is complicated because of the behavior of the fluid flow at the pore scale, and capillary quantities such as surface tension, viscosities, pressure drop, radius of the medium, and contact angle become important. In the present work, we use machine learning algorithms in TensorFlow to predict the volumetric flow rate for a given pressure drop, surface tension, viscosity and geometry of the pores. The TensorFlow software library was developed by the Google Brain team and is one of the most powerful tools for developing machine learning workflows. Machine learning models can be trained on data and then these models are used to make predictions. In this paper, the predicted values for a two-phase flow of various pore sizes and liquids are validated against the numerical and experimental results in the literature.

Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


Author(s):  
Yuqing Xue ◽  
Huixiong Li ◽  
Tianyou Sheng ◽  
Changjiang Liao

A large amount of air need be transported into the reservoir in the deep stratum to supply oxygen to some microbes in Microbial Enhanced Oil Recovery (MEOR). Air-water two-phase flows downward along vertical pipeline during the air transportation. Base on the experiment data described in this paper, the characteristics of air-water two phase flow patterns were investigated. The flow pattern map of air-water two phase flows in the pipe with inner diameter of 65 mm was drawn, criterions of flow pattern transition were discussed, and the dynamic signals of the pressure and the differential pressure of the two phase flow were recorded to characterize the three basic flow regimes indirectly. The frictional pressure drop of downward flow in vertical pipe must not be disregarded contrast with upward two phase flow in the vertical pipe because the buoyancy must be overcame when the gas flows downward along pipe, and there would be a maximum value of frictional when the flow pattern translated from slug flow to churn flow.


Author(s):  
Hideo Ide ◽  
Tohru Fukano

Air-liquid two-phase flow in a horizontal flat capillary rectangular channel has been studied to clarify the effects of concentration of surfactant solution on the flow phenomena, such as flow patterns, pressure drop, void fraction and so on. The concentrations of surfactant solution were 0, 10, 50 and 100 ppm and the surface tension of each solution was reduced to about 34mN/m from that of pure water of about 72mN/m. The dimension of the channel used was 10.0 mm × 1.0 mm. The drag reduction by mixing the surfactant was examined in both the single phase flow and the two-phase flow. The experimental data of two-phase frictional pressure drop and holdup were compared with the respective correlations which were previously proposed by the other researchers and the present authors. Finally, we proposed new correlations of two-phase frictional pressure drop and holdup in which the effect of surface tension and the aspect ratio of cross section of channel were taken into account.


Author(s):  
Siqi Zhang ◽  
Puzhen Gao

In spite of most previous studies since 1970, the theory of pulsating pipe flows supported by experimental investigations has not yet completed in comparison with the well-defined theory of steady pipe flows. Therefore, it seems that there is much to be done about experimental research in this field. In order to determine the resistance characteristics of two-phase flow under pulsatile conditions, an experimental investigation on two-phase flow with periodically fluctuating flow rates in a narrow rectangular channel is carried out. A frequency inverter is used to obtain experimental conditions with different fluctuating frequencies, amplitudes and mean values of water mass flow rate. After obtaining experimental results, comparisons between experimental frictional pressure drop values and theoretical calculations have been done. Two-phase flow on pulsating conditions is far more complicated than that on steady conditions because pulsating flow is composed of two parts: a steady component and a superimposed periodical time varying component called oscillation. In this paper, the influence of different fluctuating frequencies, amplitudes and mean values of liquid and gas mass flow rate on two-phase flow pressure drop characteristics is also discussed. The results show that the total pressure drop and water mass flow rate change with the same fluctuating period except for a phase difference. The phase lag also changes with the fluctuating frequencies and amplitude. The accelerating pressure drop changes dramatically in a fluctuating period, especially at the end of acceleration. Also, the time when the acceleration pressure drop has its maximum value lags the time when the acceleration reaches its peak, mainly because of the inertial of the fluid.


Author(s):  
Hideo Ide ◽  
Tohru Fukano

Air-liquid two-phase flow in a horizontal flat capillary rectangular channel has been studied to clarify the effects of surface tension on the flow phenomena, such as flow patterns, holdup and frictional pressure drop and so on. The concentrations of surfactant solution were 0, 10, 50 and 100 ppm and the surface tension of each solution was reduced to about 34mN/m from that of pure water of about 72mN/m. The dimension of the channel used was 10.0 mm×1.0 mm. The drag reduction by mixing the surfactant was examined in both the single phase flow and the two-phase flow. The experimental data of void fraction and two-phase frictional pressure drop were compared with the respective correlations which were previously proposed by the other researchers. Finally, we proposed new correlations of two-phase frictional pressure drop in which the effect of surface tension and the aspect ratio of cross section of channel were taken into account.


Author(s):  
O. A. Kabov ◽  
C. S. Iorio ◽  
P. Colinet ◽  
J.-C. Legros

An experimental investigation has been carried out on two-phase flow characteristics in a 10 μm circular gap. The inlet of the gap is formed by two circular surfaces with radius 10 mm. The pressure drop is measured between two points placed — respectively — at the inlet and at the outlet of the gap. The upper and lower plates of the test section are transparent. Two-phase flow patterns were determined by video recording. The single flows of liquid FC-72 and nitrogen gas, as well as two-phase flow are investigated. In two-phase flow experiments the gap is filled by liquid. Liquid is maintained continuously by surface tension in the gap and in the meniscus formed between two inlet circular surfaces. The pressure difference includes two components, surface tension component in the meniscus and viscous one. Instability appears at the entrance of the gas into the gap. At small flowrate the gas flows in the gap has the form of chains of bubbles. Part of investigation was done in microgravity during a Parabolic Flights. In order to better understand experimental results, some numerical simulations have been done both in two and three dimensions for the real geometrical configuration for one-phase flows only.


2021 ◽  
Vol 3 ◽  
Author(s):  
Subhadeep Roy ◽  
Santanu Sinha ◽  
Alex Hansen

Immiscible two-phase flow of Newtonian fluids in porous media exhibits a power law relationship between flow rate and pressure drop when the pressure drop is such that the viscous forces compete with the capillary forces. When the pressure drop is large enough for the viscous forces to dominate, there is a crossover to a linear relation between flow rate and pressure drop. Different values for the exponent relating the flow rate and pressure drop in the regime where the two forces compete have been reported in different experimental and numerical studies. We investigate the power law and its exponent in immiscible steady-state two-phase flow for different pore size distributions. We measure the values of the exponent and the crossover pressure drop for different fluid saturations while changing the shape and the span of the distribution. We consider two approaches, analytical calculations using a capillary bundle model and numerical simulations using dynamic pore-network modeling. In case of the capillary bundle when the pores do not interact to each other, we find that the exponent is always equal to 3/2 irrespective of the distribution type. For the dynamical pore network model on the other hand, the exponent varies continuously within a range when changing the shape of the distribution whereas the width of the distribution controls the crossover point.


Sign in / Sign up

Export Citation Format

Share Document