Numerical Analysis on Drag Reduction of High-Speed Train Using Rough Surface

Author(s):  
Bo Yin ◽  
Guowei Yang

Rough surfaces of flying and swimming animals help to reduce the aerodynamic or hydrodynamic drag when they move in the environment. In this research, biomimetic rough surface is introduced for high-speed train to reduce the aerodynamic drag. CFD tool is used to numerically study how the aerodynamic drag is altered by applying the biomimetic structures to the high-speed train surface. Rough surface is distributed in three areas: pantograph, bogie and windshield areas to reduce the drag at train speed of V = 400km/h. Concave is employed on these areas and orthogonally distributed with diameter of 40mm and center-to-center distance from 60mm to 80mm. The drag force is slightly increased/decreased in the pantograph area, while in the bogie and windshield areas rough structures lead to drag reduction with same distribution configuration. For all cases, the amount of shear drag change is much less than the pressure drag change. The total drag reduction mainly comes from pressure change. Rough surface positively contributes to changing the surface flow and thus reducing the aerodynamic drag.

2021 ◽  
Vol 215 ◽  
pp. 104698
Author(s):  
Xiao-Bai Li ◽  
Xi-Feng Liang ◽  
Zhe Wang ◽  
Xiao-Hui Xiong ◽  
Guang Chen ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Jie Zhang ◽  
Xinbiao Xiao ◽  
Dewei Wang ◽  
Yan Yang ◽  
Jing Fan

This paper presents a detailed investigation into the contributions of different sound sources to the exterior noise of a high-speed train both experimentally and by simulations. The in situ exterior noise measurements of the high-speed train, including pass-by noise and noise source identification, are carried out on a viaduct. Pass-by noise characteristics, noise source localizations, noise source contributions of different regions, and noise source vertical distributions are considered in the data analysis, and it is shown how they are affected by the train speed. An exterior noise simulation model of the high-speed train is established based on the method of ray acoustics, and the inputs come from the array measurements. The predicted results are generally in good agreement with the measurements. The results show that for the high-speed train investigated in this paper, the sources with the highest levels are located at bogie and pantograph regions. The contributions of the noise sources in the carbody region on the pass-by noise increase with an increasing distance, while those in the bogie and train head decrease. The source contribution rates of the bogie and the lower region decrease with increasing train speed, while those of the coach centre increase. At a distance of 25 m, the effect of the different sound sources control on the pass-by noise is analysed, namely, the lower region, bogie, coach centre, roof region, and pantograph. This study can provide a basis for exterior noise control of high-speed trains.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
He-xuan Hu ◽  
Wan-xin Lei ◽  
Ye Zhang

With the world development of high-speed railways and increasing speeds, aerodynamic forces and moments acting on trains have been increased further, making trains stay at a “floated” state. Under a strong crosswind, the aerodynamic performance of a train on the embankment is greatly deteriorated; lift force and horizontal force borne by trains will be increased quickly; trains may suffer derailing or overturning more easily compared with the flat ground; train derailing will take place when the case is serious. All of these phenomena have brought risks to people’s life and properties. Hence, the paper establishes an aerodynamic model about a high-speed train passing an air barrier, computes aerodynamic forces and moments, and analyzes pulsating pressures on the train surface as well as those of unsteady flow fields around the train. Computational results indicate that when the train passed the embankment air barrier, the head wave of air pressure full wave is more than the tail wave; the absolute value of negative wave is more than that of the positive wave, which is more obvious in the head train. When the train is passing the air barrier, pressure pulsation values at head train points are more than those at other points, while pressure changes most violently at the train bottom, and pressure values close to the air barrier are more than those points far from the air barrier. Pressure values at the cross section 1 were larger than those of other points. Pressure values at measurement points of the tail train ranked the second place, with the maximum negative pressure of 1253 Pa. Pressure change amplitudes and maximum negative pressure on the train surface are increased quickly, while pressure peak values on the high-speed train surface are in direct ratio to the running speed. With the increased speed of the high-speed train, when it is running in the embankment air barrier, the aerodynamic force and moment borne by each train body are increased sharply, while the head train suffers the most obvious influences of aerodynamic effects.


2013 ◽  
Vol 2013 (0) ◽  
pp. _G0705-01_-_G0705-02_ ◽  
Author(s):  
Sho NAKAYAMA ◽  
Makoto TSUBOKURA ◽  
Yukinobu ABE ◽  
Keiji ONISHI ◽  
Nobuyuki OSHIMA

2006 ◽  
Vol 326-328 ◽  
pp. 635-638 ◽  
Author(s):  
Young Sam Ham ◽  
Jai Sung Hong

Railways are a mass transportation system with high safety and punctuality. These strengths have been well proved by tests and evaluations. Railways are an integrated system with cars, power, signal, communication, line structures and operation. Among many safety standards of these systems, contact force between wheels and lines can be chosen since a derailment coefficient evaluated by contract force is the most important fact that decides the safety of railways. Especially regarding express trains, since they run twice faster than conventional ones, the evaluation of a derailment coefficient is more important than any other criteria. Currently, Korean express trains between Seoul and Pusan use the same stations as conventional trains in Daejeon and Dong-Daegu; therefore, express trains run on conventional lines from express lines. This paper describes test results acquired by increasing the train speed where express lines and conventional lines are connected. Test results tell that it is safe with under 0.8 derailment coefficient and running time is reduced by 10~30 seconds in each section.


Sign in / Sign up

Export Citation Format

Share Document