Wind Flow Characteristics of a Model Downburst

Author(s):  
Junayed Chowdhury ◽  
Jubayer Chowdhury ◽  
Dan Parvu ◽  
Mohammad Karami ◽  
Horia Hangan

Downburst is an anti-tornado system with a slow rotating column of air slowly descending towards the ground which occurs due to the sudden downfall of air and precipitation generated from the cumulonimbus cloud. This natural event produces a strong downdraft which induces an outburst of damaging winds on or near the ground. This radially divergent wind with high velocity transpires when descending air strikes the ground which can cause immense damage to the ground mounted objects and structures. This paper discusses the wind flow characteristics of downbursts produced in the Wind Engineering, Energy and Environment (WindEEE) Dome at Western University, Canada. Downdraft diameter and speed were varied to produce several downbursts like flow. Point measurements using Cobra probes and surface measurements using Particle Image Velocimetry (PIV) were performed to analyze the wind flow field in detail. Instantaneous downburst wind speeds were decomposed into slowly varying mean and residual fluctuations for different averaging time. Velocity profile with height from WindEEE was compared with previous experiments and full scale data.

2006 ◽  
Author(s):  
Renqiang Xiong ◽  
J. N. Chung

Flow structures and pressure drops were investigated in rectangular serpentine micro-channels with miter bends which had hydraulic diameters of 0.209mm, 0.395mm and 0.549mm respectively. To evaluate the bend effect, the additional pressure drop due to the miter bend must be obtained. Three groups of micro-channels were fabricated to remove the inlet and outlet losses. A validated micro-particle image velocimetry (μPIV) system was used to achieve the flow structure in a serpentine micro-channel with hydraulic diameter of 0.173mm. The experimental results show the vortices around the outer and inner walls of the bend do not form when Re<100. Those vortices appear and continue to develop with the Re number when Re> 100-300, and the shape and size of the vortices almost remain constant when Re>1000. The bend loss coefficient Kb was observed to be related with the Re number when Re<100, with the Re number and channel size when Re>100. It almost keeps constant and changes in the range of ± 10% When Re is larger than some value in 1300-1500. And a size effect on Kb was also observed.


Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2017 ◽  
Author(s):  
Vitali Fioletov ◽  
Chris A. McLinden ◽  
Shailesh K. Kharol ◽  
Nickolay A. Krotkov ◽  
Can Li ◽  
...  

Abstract. Reported sulfur dioxide (SO2) emissions from U.S. and Canadian sources have declined dramatically since the 1990s as a result of emissions control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in-situ measurements are examined to verify whether the observed changes from SO2 abundance measurements are quantitatively consistent with the reported changes in emissions. To make this connection, a new method to link SO2 emissions and satellite SO2 measurements was developed. The method is based on fitting satellite SO2 vertical column densities (VCDs) to a set of functions of OMI pixel coordinates and wind speeds, where each function represents a statistical model of a plume from a single point source. The concept is first demonstrated using sources in North America, and then applied to Europe. The correlation coefficient between OMI-measured VCDs (with a local bias removed) and SO2 VCDs derived here using reported emissions for 1° by 1° gridded data is 0.91 and the best-fit line has a slope near unity, confirming a very good agreement between observed SO2 VCDs and reported emissions. Having demonstrated their consistency, seasonal and annual mean SO2 VCD distributions are calculated, based on reported point-source emissions for the period 1980–2015, as would have been seen by OMI. This consistency is further substantiated as the emissions-derived VCDs also show a high correlation with annual mean SO2 surface concentrations at 50 regional monitoring stations.


2021 ◽  
Author(s):  
Davide Conti ◽  
Nikolay Dimitrov ◽  
Alfredo Peña ◽  
Thomas Herges

Abstract. In this first part of a two-part work, we study the calibration of the Dynamic Wake Meandering (DWM) model using high spatial and temporal resolution SpinnerLidar measurements of the wake field collected at the Scaled Wind Farm Technology (SWiFT) facility located in Lubbock, Texas, U.S.A. We derive two-dimensional wake flow characteristics including wake deficit, wake turbulence and wake meandering from the lidar observations under different atmospheric stability conditions, inflow wind speeds and downstream distances up to five rotor diameters. We then apply Bayesian inference to obtain a probabilistic calibration of the DWM model, where the resulting joint distribution of parameters allows both for model implementation and uncertainty assessment. We validate the resulting fully-resolved wake field predictions against the lidar measurements and discuss the most critical sources of uncertainty. The results indicate that the DWM model can accurately predict the mean wind velocity and turbulence fields in the far wake region beyond four rotor diameters, as long as properly-calibrated parameters are used and wake meandering time series are accurately replicated. We demonstrate that the current DWM-model parameters in the IEC standard lead to conservative wake deficit predictions. Finally, we provide practical recommendations for reliable calibration procedures.


2018 ◽  
Vol 878 ◽  
pp. 70-75 ◽  
Author(s):  
Jang Youl You ◽  
Sun Young Paek ◽  
Doo Kie Kim ◽  
Ki Pyo You

Soundproof tunnels and soundproof walls constructed on expressways are designed to prevent noise for the nearby surrounding residential areas. These soundproof walls and tunnels feature excellent noise prevention for residential areas nearby, but they hamper the dispersion of air pollutants generated, thus promoting the creation of heat islands during summer and cold islands during winter.The computational fluid dynamics (CFD) analysis method was used to investigate the wind flow around soundproof tunnels. The wind angle and the size of the wind velocity were determined using data from weather stations near soundproof tunnels. The CFD analysis results of the soundproof tunnels on expressways revealed that the wind velocity decreased by 30–60% following the installation of soundproof tunnels.


Author(s):  
Nasiruddin Shaikh ◽  
Kamran Siddiqui

An experimental study conducted to investigate the airside flow behavior within the crest-trough region over wind generated water waves is reported. Two-dimensional velocity field in a plane perpendicular to the surface was measured using particle image velocimetry (PIV) at wind speeds ranging from 1.5 m s−1 to 4.4 m s−1. The results show a reduction in the mean velocity magnitude when gravity waves appear on the surface. A sequence of consecutive velocity fields has shown the bursting and sweeping processes and the flow separation above the waves. The results also indicate that the flow dynamics in the crest-trough region are significantly different than that at greater heights. High level of turbulence was observed in this region which could not be predicted from the measurements at greater heights. Thus, it is concluded that the quantitative investigation of the flow in the immediate vicinity of the interface is vital for an improved understanding of the heat, mass and momentum exchange between air and water.


Author(s):  
Sung Yong Jung ◽  
Young Uk Min ◽  
Kyung Lok Lee

The performance characteristics of the radial pump commonly used as a multistage (8 or 10 stage) pump have been investigated experimentally. Due to the complex three-dimensional geometries, the hydraulic performance of multistage pumps is closely related to the internal flows in diffuser and return vanes. In order to investigate the flow characteristics in these regions by Particle Image Velocimetry (PIV) technique, a transparent pump is designed. A 532 nm continuous laser and a high-speed camera are used as a light source and an image acquisition device, respectively. The velocity field information in a diffuser of the radial pump is successfully obtained by two-dimensional PIV measurements at various operating conditions.


Sign in / Sign up

Export Citation Format

Share Document