Experimental Analysis of Air Jets for Sorting Applications

Author(s):  
Thiago Ferreira ◽  
Sylvie Sesmat ◽  
Eric Bideaux ◽  
Fabien Sixdenier

Pulsed air jets are used in the industry to eject objects in sorting operation and understand the jet establishment and its spatial characteristics is important to optimize the application. This paper presents a first experimental analysis of jets issued from a high speed solenoid valve in terms of pressure, temperature, and velocity. Results will be first shown for steady state flows at different pressure conditions inducing subsonic or supersonic air jets and compared to the literature. For a subsonic jet, the results confirm the topography proposed in the literature. For the supersonic jets, a subsonic topography was identified after the supersonic zone. These supersonic jets have a constrained diameter which is appreciated in order to perform sorting with precision. Then, first unstationary experimental results will be presented and commented. This first measurement of the jet development is encouraging, since it was possible to identify the different delays linked to the propagation time from the valve outlet to the measurement point on opening and closing.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1229
Author(s):  
Hongtao Zhang ◽  
Zhihua Wang ◽  
Yong He ◽  
Jie Huang ◽  
Kefa Cen

To improve our understanding of the interactive effects in combustion of binary multicomponent fuel droplets at sub-atmospheric pressure, combustion experiments were conducted on two fibre-supported RP-3 kerosene droplets at pressures from 0.2 to 1.0 bar. The burning life of the interactive droplets was recorded by a high-speed camera and a mirrorless camera. The results showed that the flame propagation time from burning droplet to unburned droplet was proportional to the normalised spacing distance between droplets and the ambient pressure. Meanwhile, the maximum normalised spacing distance from which the left droplet can be ignited has been investigated under different ambient pressure. The burning rate was evaluated and found to have the same trend as the single droplet combustion, which decreased with the reduction in the pressure. For every experiment, the interactive coefficient was less than one owing to the oxygen competition, except for the experiment at L/D0 = 2.5 and P = 1.0 bar. During the interactive combustion, puffing and microexplosion were found to have a significant impact on secondary atomization, ignition and extinction.


2018 ◽  
Vol 32 ◽  
pp. 01021
Author(s):  
Ştefan-Mugur Simionescu ◽  
Nilesh Dhondoo ◽  
Corneliu Bălan

In this study, the flow characteristics of an array of two circular, laminar air jets impinging on a smooth solid wall are experimentally and numerically investigated. Direct visualizations using high speed/resolution camera are performed. The evolution of the vortical structures in the area where the jet is deflected from axial to radial direction is emphasized, as well as the interaction between the two jets. A set of CFD numerical simulations in 2D flow domains are performed by using the commercial software Fluent, in the context of Reynolds-averaged Navier-Stokes (RANS) modeling. The numerical resultsare compared and validated with the experiments. The vorticity number is computed and plotted at two different positions from the jet nozzle, and a study of its distribution gives a clue on how the jets are interacting with each other in the proximity of the solid wall.


2020 ◽  
Vol 10 (1) ◽  
pp. 31-37
Author(s):  
Mohammad Hasan Fuadi

Diesel engines is generally used for industrial and agricultural machines. Few people care about the engine temperature so it is forced to reach temperature of 100oC, which causes overheating of the diesel engine and has an impact on the performance itself. This also uses a hopper cooling system which is certainly not effective, because it's necessary to see that the water in the reservoir is still or not, also not equipped with an engine temperature display so it's difficult to ascertain the temperature inside. This study aims to monitor and control the temperature of cooling water. Operation of temperature control uses a telecontrol system that is connected to network (Internet of Things) so diesel temperature control can be done remotely. Monitoring of temperature and water level in the reserve tank using Web Mobile. In addition, there is a temperature sensor that is used to measure the temperature of the cooling water so that users can monitor the temperature of the diesel engine on Web Mobile. The test results obtained, the temperature sensor has an average temperature reading error of 0.031004%. Diesel engines with controlled solenoid valve cooling systems can produce ideal temperatures compared to when the solenoid valve is open (using the radiator continuously) or when the solenoid valve is Closed (without using a radiator). When the solenoid is controlled the engine temperature can be ideal because the solenoid valve opening and closing system has the lowest temperature of 56.34oC and the highest temperature of only 80.85oC.


2004 ◽  
Vol 261 (2-3) ◽  
pp. 190-196 ◽  
Author(s):  
K.M. Mazaev ◽  
A.V. Lobanova ◽  
E.V. Yakovlev ◽  
R.A. Talalaev ◽  
A.O. Galyukov ◽  
...  

2011 ◽  
Vol 40 (10) ◽  
pp. 1484-1489
Author(s):  
余春晖 YU Chun-hui ◽  
李春波 LI Chun-bo ◽  
柴金龙 CHAI Jin-long ◽  
江展洪 JIANG Zhan-hong ◽  
李景镇 LI Jing-zhen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document