Analysis of the Co-Generation Potential of a 5 kW PEMFC From Experimentally Determined Performance Data

Author(s):  
L. G. Do Val ◽  
A. F. Orlando ◽  
C. E. R. Siqueira ◽  
J. Oexmann

A 5 kW proton exchange membrane fuel cell (PEMFC) with a reformer has been installed and tested at the Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil, aiming the experimental determination of its performance and co-generation potential to increase the fuel chemical energy usage. The unit uses a fuel processor to convert energy from natural gas into hydrogen rich reformate. The fuel cell is totally instrumented, supplying data for calculating the overall system efficiency (total efficiency), reformer efficiency, stack efficiency, conversion efficiency (DC/AC), and co-generation potential, at previously set up output powers of 2,5 kW and 4 kW. The paper details the equations required for calculating the parameters, both theoretically, from thermodynamics and electrochemics points of view, and experimentally, from mass and energy balances, comparing the results. Steady state data were taken at 13 different days, resulting in reformer, stack, conversion and total average efficiencies, together with the calculated standard deviation. It was also found that the energy loss in the reformer and in the stack are approximately the same. The co-generation potential was estimated by calculating the heat rejected by the stack and the heat rejected in the reformer, giving a value of 67,5% and 68,9%, respectively for 2,5 kW and 4 kW. Therefore, co-generation can substantially reduce the fuel cell energy cost, and thus increasing the feasibility of its use.

2015 ◽  
Vol 287 ◽  
pp. 100-107 ◽  
Author(s):  
Mei Yang ◽  
Fengjun Jiao ◽  
Shulian Li ◽  
Hengqiang Li ◽  
Guangwen Chen

2009 ◽  
Vol 32 (11) ◽  
pp. 1739-1747 ◽  
Author(s):  
G. Kolb ◽  
K.-P. Schelhaas ◽  
M. Wichert ◽  
J. Burfeind ◽  
C. Heßke ◽  
...  

Author(s):  
Kevin R. Anderson ◽  
Andrew Murphy

Abstract In this study 3-D CFD modeling of a cylindrical stack Proton-exchange membrane fuel cell (PEMFC) is provided. The H2O-O2 PEMFC uses a 10.8 mm2 area membrane and Platinum (Pt) catalyst. The paper presents the methodology for the PEMFC commercial software module, the set-up of the Computational Fluid Dynamics (CFD) geometry, mesh and boundary conditions. Results for the current-voltage performance curves and 3-D contour plots of the fluid, heat and species concentrations within the PEMFC are given. Results are presented for a low-temperature fuel cell using NAFION membrane and a high-temperature fuel cell using BZY membrane.


2015 ◽  
Vol 12 (5) ◽  
Author(s):  
Kais Brik ◽  
Faouzi Ben Ammar ◽  
Abdesslam Djerdir ◽  
Abdellatif Miraoui

This paper presents a reliability approach to analyze the degradation of proton exchange membrane fuel cell. This approach is based on the dependability analysis tools such as the causal and fault trees to establish an analysis of the internal state of the fuel cell energy conversion performance and evaluate its lifetime. The elaboration of causal tree offers powerful tools to a deductive analysis, which consists on seeking the various combinations of events leading to the fuel cell degradation. The parameters of fuel cell model are identified in order to found the degree of degradation. The experimental determination of the variation interval of the parameters is done according to each of degradation modes. A diagnostic method is proposed in order to identify the depth of each aging process of the fuel cell. The diagnosis is done by comparing the experimental output characteristic at beginning of life of the fuel cell with the used fuel cell to qualify and quantify the depth of degradation.


Author(s):  
Emad G. Barakat ◽  
Ali K. Abdel-Rahman ◽  
Mahmoud A. Ahmed ◽  
Ahmed Hamza H. Ali

The performance of Proton exchange membrane fuel cell (PEMFC) has been experimentally investigated. An experimental set-up was designed to study the effects of operating parameters such as cell temperature, gas humidification, and cell operating pressure on the performance of fuel cell. The results indicated that the output power increase with the increase of humidification ratio. Furthermore, an increase of cell pressure results in a significant increase of cell power. The results indicated that increasing of the temperature leads to a decrease of cell power. The results are explained and discussed in more details for different operational parameters.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Myalelo Nomnqa ◽  
Daniel Ikhu-Omoregbe ◽  
Ademola Rabiu

This study focuses on performance analysis of a 1 kWemicrocogeneration system based on a high temperature proton exchange membrane (HT-PEM) fuel cell by means of parametric investigation. A mathematical model for a system consisting of a fuel processor (steam reforming reactor and water-gas shift reactor), a HT-PEM fuel cell stack, and the balance-of-plant components was developed. Firstly, the fuel processor performance at different fuel ratios and equivalence ratio was examined. It is shown that high fuel ratios of 0.9–0.95 and equivalence ratios of less than 0.56 are suitable for acceptable carbon monoxide content in the synthetic gas produced. Secondly, a parametric study of the system performance at different fuel and equivalence ratios using key system operating parameters was conducted. Steam-to-carbon ratio, stack operating temperature, and anode stoichiometry were varied to observe the changes in the microcogeneration system. The analysis shows that the system can reach electrical and cogeneration efficiencies of 30% and 84%, respectively.


Sign in / Sign up

Export Citation Format

Share Document