Computational Modeling of PEM Fuel Cells With PBI Membranes

Author(s):  
Denver F. Cheddie ◽  
Norman D. H. Munroe

A parametric model of a proton exchange membrane fuel cell (PEMFC) operating with a polybenzimidazole (PBI) membrane is presented. The model is three dimensional and applicable for PEMFCs operating at intermediate temperatures (120–150 °C). It accounts for all transport and polarization phenomena, and the results compare well with published experimental data for equivalent operating conditions. Results for oxygen concentration and temperature variations are presented. The model predicts the oxygen depletion, which occurs in the catalyst area under the ribs, and which gives an indication of the catalyst utilization. Results also predict that for an output power density of 1 kW m−2, a cell temperature rise of up to 30 K can be expected for typical laboratory operating conditions. Parametric analyses indicate that significant gain in fuel cell performance can be expected by increasing the conductivity of the PBI membrane. Further, results demonstrate that when the catalyst region is well utilized, increasing the catalyst activity results in only a small improvement in performance.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 144
Author(s):  
Abed Alaswad ◽  
Abdelnasir Omran ◽  
Jose Ricardo Sodre ◽  
Tabbi Wilberforce ◽  
Gianmichelle Pignatelli ◽  
...  

This review critically evaluates the latest trends in fuel cell development for portable and stationary fuel cell applications and their integration into the automotive industry. Fast start-up, high efficiency, no toxic emissions into the atmosphere and good modularity are the key advantages of fuel cell applications. Despite the merits associated with fuel cells, the high cost of the technology remains a key factor impeding its widespread commercialization. Therefore, this review presents detailed information into the best operating conditions that yield maximum fuel cell performance. The paper recommends future research geared towards robust fuel cell geometry designs, as this determines the cell losses, and material characterization of the various cell components. When this is done properly, it will support a total reduction in the cost of the cell which in effect will reduce the total cost of the system. Despite the strides made by the fuel cell research community, there is a need for public sensitization as some people have reservations regarding the safety of the technology. This hurdle can be overcome if there is a well-documented risk assessment, which also needs to be considered in future research activities.


2000 ◽  
Author(s):  
Tianhong Zhou ◽  
Hongtan Liu

Abstract A comprehensive three-dimensional model for a proton exchanger membrane (PEM) fuel cell is developed to evaluate the effects of various design and operating parameters on fuel cell performance. The geometrical model includes two distinct flow channels separated by the membrane and electrode assembly (MEA). This model is developed by coupling the governing equations for reactant mass transport and chemical reaction kinetics. To facilitate the numerical solution, the full PEM fuel cell was divided into three coupled domains according to the flow characteristics. The 3-D model has been applied to study species transport, heat transfer, and current density distributions within a fuel cell. The predicated polarization behavior is shown to compare well with experimental data from the literature. The modeling results demonstrate good potential for this computational model to be used in operation simulation as well as design optimization.


Author(s):  
Brian Kientiz ◽  
Haruhiko Yamada ◽  
Nobuaki Nonoyama ◽  
Adam Z. Weber

It is well known that the proton-exchange membrane is perhaps the most critical component of a polymer-electrolyte fuel cell. Typical membranes, such as Nafion®, require hydration to conduct efficiently and are instrumental in cell water management. Recently, evidence has been shown that these membranes might have different interfacial morphology and transport properties than in bulk. In this paper, experimental data combined with theoretical simulations that explore the existence and impact of interfacial resistance on water transport for Nafion®21x membranes will be presented. A mass-transfer coefficient for the interfacial resistance is calculated from experimental data using different permeation cells. This coefficient is shown to depend exponentially on relative humidity or water activity. The interfacial resistance does not seem to exist for liquid/membrane or membrane/membrane interfaces. The effect of the interfacial resistance is to flatten the water content profiles within the membrane during operation. Under typical operating conditions, the resistance is on par with the water transport resistance of the bulk membrane. Thus, the interfacial resistance can be dominant especially in thin, dry membranes and can affect overall fuel cell performance.


2018 ◽  
Vol 388 ◽  
pp. 350-360 ◽  
Author(s):  
Chang Jie Li ◽  
Ye Liu ◽  
Zhe Shu Ma

An irreversible model of proton exchange membrane fuel cells working at steady-state is established, in which the irreversibility resulting from overpotentials, internal currents and leakage currents are taken into account.In this paper, the irreversibility of fuel cell is expounded mainly from electrochemistry. The general performance characteristic curves are generated including output voltage, output power and output efficiency. In addition, the irreversibility of a class of PEMFC is studied by changing the operating conditions (controllable factors) of the fuel cell, including effect of operating temperature, operating pressure and leakage current. The results provide a theoretical basis for both the operation and optimal design of real PEM fuel cells.


2013 ◽  
Vol 724-725 ◽  
pp. 723-728
Author(s):  
Xue Nan Zhao ◽  
Hong Sun ◽  
Zhi Jie Li

High temperature proton exchange membrane (HT-PEM) fuel cell is considered as one of the most probable fuel cells to be large-scale applied due to characteristics of high efficiency, friendly to environment, low fuel requirement, ease water and heat management, and so on. However, carbon monoxide (CO) content in fuel plays an important role in the performance of HT-PEM fuel cells. Volt-ampere characteristics and AC impedance of HT-PEM fuel cell are tested experimentally in this paper, and effects of CO in fuel on its performance are analyzed. The experimental results show that CO in fuel increases remarkably the Faraday resistance of HT-PEM fuel cell and decreases the electrochemical reaction at anode; the more CO content in fuel is, the less HT-PEM fuel cell performance is; with the increasing cell temperature, the electrochemical reaction on the surface of catalyst at anode is improved and the poisonous effects on the HT-PEM fuel cell are alleviated.


2021 ◽  
Vol 11 (5) ◽  
pp. 2052
Author(s):  
Amlak Abaza ◽  
Ragab A. El-Sehiemy ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
Mohamed M. F. Darwish

In recent years, the penetration of fuel cells in distribution systems is significantly increased worldwide. The fuel cell is considered an electrochemical energy conversion component. It has the ability to convert chemical to electrical energies as well as heat. The proton exchange membrane (PEM) fuel cell uses hydrogen and oxygen as fuel. It is a low-temperature type that uses a noble metal catalyst, such as platinum, at reaction sites. The optimal modeling of PEM fuel cells improves the cell performance in different applications of the smart microgrid. Extracting the optimal parameters of the model can be achieved using an efficient optimization technique. In this line, this paper proposes a novel swarm-based algorithm called coyote optimization algorithm (COA) for finding the optimal parameter of PEM fuel cell as well as PEM stack. The sum of square deviation between measured voltages and the optimal estimated voltages obtained from the COA algorithm is minimized. Two practical PEM fuel cells including 250 W stack and Ned Stack PS6 are modeled to validate the capability of the proposed algorithm under different operating conditions. The effectiveness of the proposed COA is demonstrated through the comparison with four optimizers considering the same conditions. The final estimated results and statistical analysis show a significant accuracy of the proposed method. These results emphasize the ability of COA to estimate the parameters of the PEM fuel cell model more precisely.


Author(s):  
Han-Sang Kim ◽  
Tae-Hun Ha ◽  
Sung-Jin Park ◽  
Kyoungdoug Min ◽  
Minsoo Kim

Visualization technique was used to better understand the water build-up phenomena on the cathode side of a proton exchange membrane (PEM) unit fuel cell. In this study, a transparent PEM unit fuel cell with an active area of 25 cm2 was designed and fabricated to allow for the visualization of cathode channel with fuel cell performance characteristics. Two-phase flow due to the electrochemical reaction of fuel cell was experimentally investigated. The images photographed by CCD camera with various cell temperatures (30–50°C) and different inlet humidification levels were presented in this study. Results indicated that the flooding on the cathode side first occurs near the exit of cathode flow channel. As the fuel cell operating temperature increases, it was found that water droplets tend to evaporate easily because of increased saturation vapor pressure and it can have an influence on lowering the flooding level. The approaches of this study can effectively contribute to the detailed researches on water transport phenomena including modeling water transport of an operating PEM fuel cell.


Author(s):  
Nima Ahmadi ◽  
Sajad Rezazadeh ◽  
Mirkazem Yekani ◽  
Alireza Fakouri ◽  
Iraj Mirzaee

A full three-dimensional, single phase model of a proton exchange membrane fuel cell (PEMFC) has been developed. A single set of conservation equations developed and numerically solved using a finite volume based computational fluid dynamics technique. In present investigation some parameters such as transport phenomena, fuel cell performance for conventional model (base case) and the effect of inlet gases humidity on cell performance were investigated in more details. The numerical results prove that the inlet gases humidity and membrane water management are most important parameters that affect cell performance and transport phenomena in fuel cell. Finally the numerical results are compared with experimental data, which represent good agreement.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 146
Author(s):  
Tabbi Wilberforce ◽  
Oluwatosin Ijaodola ◽  
Ogungbemi Emmanuel ◽  
James Thompson ◽  
Abdul Ghani Olabi ◽  
...  

A low cost bipolar plate materials with a high fuel cell performance is important for the establishment of Proton Exchange Membrane (PEM ) fuel cells into the competitive world market. In this research, the effect of different bipolar plates material such as Aluminum (Al), Copper (Cu), and Stainless Steel (SS) of a single stack of proton exchange membrane (PEM) fuel cells was investigated both numerically and experimentally. Firstly, a three dimensional (3D) PEM fuel cell model was developed, and simulations were conducted using commercial computational fluid dynamics (CFD) ANSYS FLUENT to examine the effect of each bipolar plate materials on cell performance. Along with cell performance, significant parameters distributions like temperature, pressure, a mass fraction of hydrogen, oxygen, and water is presented. Then, an experimental study of a single cell of Al, Cu, and SS bipolar plate material was used in the verification of the numerical investigation. Finally, polarization curves of numerical and experimental results was compared for validation, and the result shows that Al serpentine bipolar plate material performed better than Cu and SS materials. The outcome of the investigation was in tandem to the fact that due to adsorption on metal surfaces, hydrogen molecules is more stable on Al surface than Cu and SS surfaces.


2008 ◽  
Vol 130 (12) ◽  
Author(s):  
N. Fekrazad ◽  
T. L. Bergman

A three-dimensional model is used to predict the power output and internal temperature distribution of a small proton exchange membrane fuel cell stack. Of particular interest is the influence of nonuniform stack compression on thermal conditions inside the fuel cell. A dimensionless membrane isothermality is correlated with a dimensionless compressive load distribution, suggesting that similar relationships may be developed for other fuel cell geometries. Fuel cell performance, in terms of minimizing temperature variations inside the device, can be enhanced by application of nonuniform stack compression.


Sign in / Sign up

Export Citation Format

Share Document