Optimization of an Integrated SOFC-Fuel Processing System for Aircraft Propulsion

Author(s):  
Thomas E. Brinson ◽  
Juan C. Ordonez ◽  
Cesar A. Luongo

As fuel cells continue to improve in performance and power densities levels rise, potential applications ensue. System-level performance modeling tools are needed to further the investigation of future applications. One such application is small-scale aircraft propulsion. Both piloted and unmanned fuel cell aircrafts have been successfully demonstrated suggesting the near-term viability of revolutionizing small-scale aviation. Nearly all of the flight demonstrations and modeling efforts are conducted with low temperature fuel cells; however, the solid oxide fuel cell (SOFC) should not be overlooked. Attributing to their durability and popularity in stationary applications, which require continuous operation, SOFCs are attractive options for long endurance flights. This study presents the optimization of an integrated solid oxide fuel cell-fuel processing system model for performance evaluation in aircraft propulsion. System parameters corresponding to maximum steady state thermal efficiencies for various flight phase power levels were obtained through implementation of the PSO algorithm (Particle Swarm Optimization). Optimal values for fuel utilization, air stoichiometric ratio, air bypass ratio, and burner ratio, a 4-dimensional optimization problem, were obtained while constraining the SOFC operating temperature to 650–1000 °C. The PSO swarm size was set to 35 particles and the number of iterations performed for each case flight power level was set at 40. Results indicate the maximum thermal efficiency of the integrated fuel cell-fuel processing system remains in the range of 44–46% throughout descend, loitering, and cruise conditions. This paper discusses a system-level model of an integrated fuel cell - fuel processing system, and presents a methodology for system optimization through the particle swarm algorithm.

2012 ◽  
Vol 9 (4) ◽  
Author(s):  
Thomas E. Brinson ◽  
Juan C. Ordonez ◽  
Cesar A. Luongo

As fuel cells continue to improve in performance and power densities levels rise, potential applications ensue. System-level performance modeling tools are needed to further the investigation of future applications. One such application is small-scale aircraft propulsion. Both piloted and unmanned fuel cell aircrafts have been successfully demonstrated suggesting the near-term viability of revolutionizing small-scale aviation. Nearly all of the flight demonstrations and modeling efforts are conducted with low temperature fuel cells; however, the solid oxide fuel cell (SOFC) should not be overlooked. Attributing to their durability and popularity in stationary applications, which require continuous operation, SOFCs are attractive options for long endurance flights. This study presents the optimization of an integrated solid oxide fuel cell-fuel processing system model for performance evaluation in aircraft propulsion. System parameters corresponding to maximum steady state thermal efficiencies for various flight phase power levels were obtained through implementation of the particle swarm optimization (PSO) algorithm. Optimal values for fuel utilization, air stoichiometric ratio, air bypass ratio, and burner ratio, a four-dimensional optimization problem, were obtained while constraining the SOFC operating temperature to 650–1000 °C. The PSO swarm size was set to 35 particles, and the number of iterations performed for each case flight power level was set at 40. Results indicate the maximum thermal efficiency of the integrated fuel cell-fuel processing system remains in the range of 44–46% throughout descend, loitering, and cruise conditions. This paper discusses a system-level model of an integrated fuel cell-fuel processing system, and presents a methodology for system optimization through the particle swarm algorithm.


RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7-14
Author(s):  
Cheng Cheng Wang ◽  
Mortaza Gholizadeh ◽  
Bingxue Hou ◽  
Xincan Fan

Strontium segregation in a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) electrode reacts with Cr and S in a solid oxide fuel cell (SOFC), which can cause cell performance deterioration.


2017 ◽  
Vol 10 (4) ◽  
pp. 964-971 ◽  
Author(s):  
Yu Chen ◽  
Yan Chen ◽  
Dong Ding ◽  
Yong Ding ◽  
YongMan Choi ◽  
...  

A hybrid catalyst coating dramatically enhances the electrocatalytic activity and durability of a solid oxide fuel cell cathode.


Author(s):  
Pegah Mottaghizadeh ◽  
Mahshid Fardadi ◽  
Faryar Jabbari ◽  
Jacob Brouwer

Abstract In this study, an islanded microgrid system is proposed that integrates identical stacks of solid oxide fuel cell and electrolyzer to achieve a thermally self-sustained energy storage system. Thermal management of the SOEC is achieved by use of heat from the SOFC with a heat exchanger network and control strategies. While the SOFC meets the building electricity demand and heat from its electrochemical reactions is transferred to the SOEC for endothermic heat and standby demands. Each component is physically modelled in Simulink and ultimately integrated at the system level for dynamic analyses. The current work simulates a system comprised of a wind farm in Palm Springs, CA coupled with the SOEC (for H2 generation), and an industrial building powered by the SOFC. Results from two-weeks of operation using measured building and wind data showed that despite fluctuating power profiles, average temperature and local temperature gradients of both the SOEC and SOFC were within desired tolerances. However, for severe conditions of wind power deficit, H2 had to be supplied from previous windy days' storage or imported.


2019 ◽  
Vol 9 (24) ◽  
pp. 5450
Author(s):  
Alexandros Arsalis ◽  
George E. Georghiou

A small-scale, decentralized hybrid system is proposed for autonomous operation in a commercial building (small hotel). The study attempts to provide a potential solution, which will be attractive both in terms of efficiency and economics. The proposed configuration consists of the photovoltaic (PV) and solid oxide fuel cell (SOFC) subsystems. The fuel cell subsystem is fueled with natural gas. The SOFC stack model is validated using literature data. A thermoeconomic optimization strategy, based on a genetic algorithm approach, is applied to the developed model to minimize the system lifecycle cost (LCC). Four decision variables are identified and chosen for the thermoeconomic optimization: temperature at anode inlet, temperature at cathode inlet, temperature at combustor exit, and steam-to-carbon ratio. The total capacity at design conditions is 70 and 137.5 kWe, for the PV and SOFC subsystems, respectively. After the application of the optimization process, the LCC is reduced from 1,203,266 to 1,049,984 USD. This improvement is due to the reduction of fuel consumed by the system, which also results in an increase of the average net electrical efficiency from 29.2 to 35.4%. The thermoeconomic optimization of the system increases its future viability and energy market penetration potential.


2005 ◽  
Vol 127 (1) ◽  
pp. 86-90 ◽  
Author(s):  
Eric A. Liese ◽  
Randall S. Gemmen

Solid Oxide Fuel Cell (SOFC) developers are presently considering both internal and external reforming fuel cell designs. Generally, the endothermic reforming reaction and excess air through the cathode provide the cooling needed to remove waste heat from the fuel cell. Current information suggests that external reforming fuel cells will require a flow rate twice the amount necessary for internal reforming fuel cells. The increased airflow could negatively impact system performance. This paper compares the performance among various external reforming hybrid configurations and an internal reforming hybrid configuration. A system configuration that uses the reformer to cool a cathode recycle stream is introduced, and a system that uses interstage external reforming is proposed. Results show that the thermodynamic performance of these proposed concepts are an improvement over a base-concept external approach, and can be better than an internal reforming hybrid system, depending on the fuel cell cooling requirements.


Sign in / Sign up

Export Citation Format

Share Document