Synthesis, Characterization and Physiochemical Properties of Platinum Supported on Mesoporous Carbon

Author(s):  
Salam J. J. Titinchi ◽  
Waheed Saban ◽  
Leslie Petrik ◽  
Hanna S. Abbo

Ordered mesoporous carbon (OMC) has been prepared by impregnating the pores of the silica template (SBA-15) with liquid petroleum gas (LPG) or sucrose. The desired support (OMC) was obtained after dissolution with NaOH. Platinum nanoparticles were dispersed on ordered mesoporous carbons using Chemical Vapour Deposition (CVD) method and Pt(acac)2 as metal source. The resulting ordered mesoporous carbon possess a large surface area with high microporosity, and a controlled pore size distribution, High-quality carbon replicas of SBA-15 show an X-ray diffraction peak at low angle, which indicates that the structural periodicity of the (111) planes has been maintained. Their pore volume and specific surface area are high and the pore volume is almost entirely microporous. The synthesized Pt/OMC was characterized by powder X-Ray diffraction, HR-TEM, HR-SEM, EDS, thermogravimetric analysis, and nitrogen adsorption. The performance of Pt catalyst supported OMC was evaluated by electrochemical studies, which shows almost similar activity to the commercial catalyst.

2018 ◽  
Vol 71 (3) ◽  
pp. 170 ◽  
Author(s):  
Xuejia Zhan ◽  
Guangzhi Hu ◽  
Thomas Wagberg ◽  
Dongwei Zhang ◽  
Pei Zhou

A novel aptasensor based on a tetracycline (TET) aptamer immobilized by physical adsorption on an ordered mesoporous carbon–Fe3O4 (OMC-Fe3O4)-modified screen-printed electrode surface was successfully fabricated. OMC-Fe3O4 was characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The modification procedure of the aptasensor was characterized by cyclic voltammetry. Interaction between the TET aptamer and target was determined by differential pulse voltammetry. Under optimal conditions, the proposed aptasensor exhibited good electrochemical sensitivity to TET in a concentration range of 5 nM to 10 μM, with a detection limit of 0.8 nM (S/N = 3). This aptasensor exhibited satisfactory specificity, reproducibility, and stability.


Author(s):  
Le Thi Thu Hang ◽  
Hoang Thi Bich Thuy

In this work, highly ordered mesoporous graphitic carbon (G-CMK3) has been prepared successfully by a nano-casting method using sucrose as carbon source, mesoporous silica as hard template, and soybean oil as surfactant. In the absence of soybean oil surfactant, the synthesized ordered mesoporous carbon material, CMK-3, revealed a low graphitization degree with a specific surface area of 1049.1 m2/g and a high pore volume of 1.172 cm3/g.  However, with the assistance of soybean oil surfactant, the graphitization degree was improved significantly, which was confirmed by the decrease in the ID/IG intensity ratio of the D (disordered or amorphous structure) and G (graphitic structure) peaks from 0.98 to 0.83. After the synthesis in the presence of soybean oil, G-CMK3 carbon maintained the integrity of the mesoporous structure albeit with a slight decrease in its specific surface area (845.2 m2/g) as well as pore volume (0.858 cm3/g).


2016 ◽  
Vol 78 (3-2) ◽  
Author(s):  
Nur Izzatie Hannah Razman ◽  
Salasiah Endud ◽  
Izan Izwan Misnon ◽  
Zainab Ramli

In this study, ordered mesoporous carbon (OMC) was prepared via nano-casting method by using Santa Barbara Amorphous (SBA)-15 as a template and sucrose as a carbon precursor. The OMC was subsequently oxidized with aqueous nitric acid and referred as MOMC. The physicochemical properties of OMC and MOMC were determined using nitrogen adsorption–desorption analyser, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). The results proved that the carbon replication process was successful. The electrochemical performance tests were carried out using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) in 1 M KOH electrolyte for 1000 cycles. After oxidative treatment, the specific surface area and pore volume of OMC decreased but the specific capacitance of the electrode material has significantly increased from 117      F g–1 to 344 F g–1 at a scan rate of 10 mV s–1.   


2013 ◽  
Vol 320 ◽  
pp. 661-664
Author(s):  
Hai Jing Zhao ◽  
Dong Lin Zhao ◽  
Ji Ming Zhang ◽  
Dong Dong Zhang

Ordered mesoporous carbon nanospheres with uniformly penetrating channels have been successfully synthesized by a nanocasting method using mesoporous silica as a template. The ordered mesoporous carbon nanospheres were investigated as electrode materials for supercapacitors via high-resolution transmission electron microscopy, nitrogen adsorption and desorption isotherms and a variety of electrochemical testing techniques. The electrodes with ordered mesoporous carbon nanospheres prepared by coating method exhibited good rate capability and reversibility at high scan rates in electrochemical performances. Ordered mesoporous carbon nanosphere electrode with specific surface area of 904 m2/g maintained a stable specific capacitance of 210 F g-1under specific current of 0.1 A g-1for 500 cycles of charge/discharge.


2003 ◽  
Vol 15 (19) ◽  
pp. 1602-1606 ◽  
Author(s):  
A.-H. Lu ◽  
W. Schmidt ◽  
B. Spliethoff ◽  
F. Schüth

2014 ◽  
Vol 906 ◽  
pp. 39-44
Author(s):  
Cheng Li Zhang ◽  
Shi Fei Kang ◽  
Qian Yu Zhang ◽  
Xi Li

Cu-modified graphitic ordered mesoporous carbon supported TiO2 catalyst was synthesized based on a hard template method. X-ray diffraction, nitrogen adsorption-desorption, scanning electron microscopy and transmission electron microscopy analysis techinques were used to characterize the sample. It was observed that copper and anatase TiO2 nanoparticles were well dispersed in the Cu-modified mesoporous graphitic carbon, and the resulting composite with ordered mesostructure and high specific surface area exhibited an exceptionally high activity in the photocatalytic reduction of CO2 with H2O under simulated solar irradiation.


Sign in / Sign up

Export Citation Format

Share Document