SOFC Micro-CHP System With Thermal Energy Storage in Residential Applications

Author(s):  
Alejandra Hormaza-Mejia ◽  
Li Zhao ◽  
Jack Brouwer

To improve the energy efficiency and achieve zero-net energy goals, as well as to reduce environmental impacts, we demonstrated and evaluated the use of a 1.5 kW Solid Oxide Fuel Cell (SOFC) with Micro-combined heat and power (Micro-CHP) for powering residential homes. In this study, we designed, tested and demonstrated an SOFC Micro-CHP system as a Distributed Generation (DG) prime mover that has high reliability and availability, high efficiency and ultra-low emissions for steady state operation. Energy balances and dynamic analyses of integrating a thermal storage system with the SOFC Micro-CHP system were carried out using a summer load profile of a residence in Southern California. The thermal storage system was found to mitigate the dynamics introduced from the electric water heater and smooth out the residential load profile. Additionally, the integrated thermal storage system and the SOFC Micro-CHP system was found to reduce the overall electricity import and thus the carbon emissions.

2013 ◽  
Vol 448-453 ◽  
pp. 3201-3208
Author(s):  
Guan Sun ◽  
You Tong Zhang ◽  
Chun Hui Yang ◽  
Yao Jia Jian

This paper introduces the optimal electrical system design for a solar car, which complies with the regulations of World Solar Challenge 2013. The optimal design principles of high efficiency, light weight and high reliability were proposed. The solar energy collection system, energy storage system, drive system and electronic control system were all designed under the guidance of the principles. The structure and working principle of the solar car electrical system are also introduced. The experimental results show that the design goals have been achieved, and the performance of the system has also been verified.


2013 ◽  
Author(s):  
Eduardo Villarroel ◽  
Carlos Fernandez-Pello ◽  
Jeff Lenartz ◽  
Karen Parysek

2003 ◽  
Vol 3 (4) ◽  
pp. 169-175 ◽  
Author(s):  
S. Barbagallo ◽  
F. Brissaud ◽  
G.L. Cirelli ◽  
S. Consoli ◽  
P. Xu

In arid and semiarid regions the reclamation and reuse of municipal wastewater can play a strategic role in alleviating water resources shortages. Public awareness is growing about the need to recycle and reuse water for increasing supply availability. Many wastewater reuse projects have been put in operation in European and Mediterranean countries adopting extensive treatment systems such as aquifer recharge, lagooning, constructed wetlands, and storage reservoirs, mainly for landscape and agricultural irrigation. In agricultural reuse systems, there is an increasing interest in extensive technologies because of their high reliability, and easy and low cost operation and maintenance. Wastewater storage reservoirs have become the option selected in many countries because of the advantages they present in comparison with other treatment alternatives, namely the coupling of two purposes, stabilization and seasonal regulation. This paper describes an example of a wastewater storage system, built in Caltagirone (Sicily, Italy). The storage results in a tertiary treatment of a continuous inlet flow of activated sludge effluents. The prediction of the microbiological water quality has been evaluated by means of a non-steady-state first-order kinetic model. Single and multiple regressions were applied to determine the main variables that most significantly affected die-off coefficients. The proposed model has been calibrated using the results of a field monitoring carried out during a period from March to October 2000.


2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


2021 ◽  
Vol 137 ◽  
pp. 110615
Author(s):  
J. Jarvinen ◽  
M. Goldsworthy ◽  
S. White ◽  
P. Pudney ◽  
M. Belusko ◽  
...  

Author(s):  
Yunfei Fu ◽  
Hongchuan Yu ◽  
Chih-Kuo Yeh ◽  
Tong-Yee Lee ◽  
Jian J. Zhang

Brushstrokes are viewed as the artist’s “handwriting” in a painting. In many applications such as style learning and transfer, mimicking painting, and painting authentication, it is highly desired to quantitatively and accurately identify brushstroke characteristics from old masters’ pieces using computer programs. However, due to the nature of hundreds or thousands of intermingling brushstrokes in the painting, it still remains challenging. This article proposes an efficient algorithm for brush Stroke extraction based on a Deep neural network, i.e., DStroke. Compared to the state-of-the-art research, the main merit of the proposed DStroke is to automatically and rapidly extract brushstrokes from a painting without manual annotation, while accurately approximating the real brushstrokes with high reliability. Herein, recovering the faithful soft transitions between brushstrokes is often ignored by the other methods. In fact, the details of brushstrokes in a master piece of painting (e.g., shapes, colors, texture, overlaps) are highly desired by artists since they hold promise to enhance and extend the artists’ powers, just like microscopes extend biologists’ powers. To demonstrate the high efficiency of the proposed DStroke, we perform it on a set of real scans of paintings and a set of synthetic paintings, respectively. Experiments show that the proposed DStroke is noticeably faster and more accurate at identifying and extracting brushstrokes, outperforming the other methods.


Sign in / Sign up

Export Citation Format

Share Document