Power Plant System Configurations for the 21st Century

Author(s):  
A. D. Rao ◽  
G. S. Samuelsen ◽  
F. L. Robson ◽  
R. A. Geisbrecht

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of the Vision 21 program. The myriad of fuel processing, power generation, and emission control technologies are narrowed down to selected scenarios in order to identify those combinations that have the potential to achieve the Vision 21 program goals of high efficiency and minimized environmental impact while using fossil fuels. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government supported research. Examples of systems included in these advanced cycles are solid oxide and molten carbonate fuel cells, advanced gas turbines, ion transport membrane separation and hydrogen-oxygen combustion.

Author(s):  
A. D. Rao ◽  
G. S. Samuelsen ◽  
F. L. Robson ◽  
R. A. Geisbrecht

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of the Vision 21 program. Earlier tasks of the program have narrowed down the myriad of fuel processing, power generation, and emission control technologies to selected scenarios that identify those combinations having the potential to achieve the Vision 21 program goals of high efficiency and minimized environmental impact while using fossil fuels. These analyses have been extended to consider coal gasification processes combined with the advanced power cycles previously identified. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government supported research. Examples of systems included in these advanced cycles are solid oxide fuel cells, advanced cycle gas turbines, membrane separation of gases and oxygen-enhanced combustion.


Author(s):  
A. D. Rao ◽  
G. Scott Samuelsen ◽  
F. L. Robson ◽  
R. A. Geisbrecht

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of the Vision 21 program. Earlier tasks of the program have narrowed down the myriad of fuel processing, power generation, and emission control technologies to selected scenarios that identify those combinations having the potential to achieve the Vision 21 program goals of high efficiency and minimized environmental impact while using fossil fuels. These analyses have been extended to consider coal gasification processes combined with the advanced power cycles previously identified. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government supported research. Examples of systems included in these advanced cycles are solid oxide fuel cells, advanced cycle gas turbines, and membrane separation of gases.


Author(s):  
A. D. Rao ◽  
G. S. Samuelsen ◽  
Y Yi

Under the sponsorship of the US Department of Energy/National Energy Technology Laboratory, a multidisciplinary team led by the Advanced Power and Energy Programme of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into power plant systems that meet performance and emission goals of the ‘Vision 21’ programme. Earlier tasks of the programme have narrowed down the myriad of fuel processing, power generation, and emission control technologies to selected scenarios that identify those combinations having the potential to achieve the Vision 21 programme goals of high efficiency and minimized environmental impact while using fossil fuels. These analyses have been extended to include coal-based ‘zero-emission’ power plants and H2 coproduction facilities. The technology levels considered are based on projected technical and manufacturing advances being made in industry and on advances identified in current and future government-supported research. Included in these advanced systems are solid oxide fuel cells and advanced-cycle gas turbines. The results of this investigation will serve as a guide for the US Department of Energy in identifying the research areas and technologies that warrant further support.


Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


2001 ◽  
Vol 123 (2) ◽  
pp. 160-163 ◽  
Author(s):  
Rainer Tamme ◽  
Reiner Buck ◽  
Michael Epstein ◽  
Uriyel Fisher ◽  
Chemi Sugarmen

This paper presents a novel process comprising solar upgrading of hydrocarbons by steam reforming in solar specific receiver-reactors and utilizing the upgraded, hydrogen-rich fuel in high efficiency conversion systems, such as gas turbines or fuel cells. In comparison to conventionally heated processes about 30% of fuel can be saved with respect to the same specific output. Such processes can be used in small scale as a stand-alone system for off-grid markets as well as in large scale to be operated in connection with conventional combined-cycle plants. The complete reforming process will be demonstrated in the SOLASYS project, supported by the European Commission in the JOULE/THERMIE framework. The project has been started in June 1998. The SOLASYS plant is designed for 300 kWel output, it consists of the solar field, the solar reformer and a gas turbine, adjusted to operate with the reformed gas. The SOLASYS plant will be operated at the experimental solar test facility of the Weizmann Institute of Science in Israel. Start-up of the pilot plant is scheduled in April 2001. The midterm goal is to replace fossil fuels by renewable or non-conventional feedstock in order to increase the share of renewable energy and to establish processes with only minor or no CO2 emission. Examples might be upgrading of bio-gas from municipal solid waste as well as upgrading of weak gas resources.


Author(s):  
Stéphanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with precombustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost, and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown partial oxidation reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared with conventional solvent-based separation and benefit from the high-pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short-term and long-term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided (2006 Q1 basis). This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.


Author(s):  
Mircea Fetescu

The High Efficiency-Coal and Gas (HE-C&G) is a hybrid power plant concept integrating Conventional Steam Power Plants (CSPP) and gas turbine / combined cycle plants. The gas turbine exhaust gas energy is recovered in the HRSG providing partial condensate and feedwater preheating and generating steam corresponding to the main boiler live steam conditions (second steam source for the ST). The concept, exhibiting very high design flexibility, integrates the high performance Sequential Combustion gas turbines GT24/GT26 technology into a wide range of existing or new CSPP. Although HE-C&G refers to coal as the most abundant fossil fuel resource, oil or natural gas fired steam plants could be also designed or converted following the same principle. The HE-C&G provides very high marginal efficiencies on natural gas, up to and above 60%, very high operating and dispatching flexibility and on-line optimization of fuel and O&M costs at low capital investment. This paper emphasizes the operating flexibility and resulting benefits, recommending the HE-C&G as one of the most profitable options for generating power especially for conversion of existing CSPP with gas turbines.


Author(s):  
S. Nogami ◽  
N. Ando ◽  
Y. Noguchi ◽  
K. Takahashi ◽  
T. Iwamiya ◽  
...  

Kyushu Electric Power Co., Inc., in constructing the recently completed first phase of the No. 1 Group of Shin-Oita Power Plant, Oita Prefecture (Kyushu Island), achieved further improvements over previous combined cycle plants, especially in the area of plant overall operation. It is composed of six combined cycle power units of the single-shaft, non-reheat type, based on Hitachi-GE MS7001E gas turbines, with a total output of 690 MW. Trial operations of the first unit began in May, 1990. Commercial operations of the first unit began in November 1990, and the last unit in June, 1991. The NO.1 Group incorporates two major advances over previous combined cycle plants. The first advance is a two-stage multiple nozzle dry-type low-NOx combustor. This combustor is a new development for keeping the level of NOx emissions below 62.5 ppm (16% O2 at gas turbine exhaust). The second advance is a new functionally and hierarchically distributed digital control system. By the control system, the plant was designed to bring the following notable features: 1 The individual units can be started and stopped automatically from the load dispatching directive center at the head office. 2 The plant can be operated for high efficiency with short starting and stopping time and large load variations. 3 Plant operating characteristics for emergency operations can be improved remarkably, for instance, load run back operations and fast cut back operation, etc. The results of trial operations have shown that the output per unit is about 0.5 to 4.2% higher, and the unit efficiency about 1.9 to 3.7% higher, than the planned values (all percentages relative), and tangible improvements and starting characteristics and load fluctuation are also satisfactory with the specified target values in the overall operation of the plant over that of previous combined cycle power plants. This plant has satisfactorily been operated since the start of commercial operation.


Author(s):  
F. Eulitz ◽  
B. Kuesters ◽  
F. Mildner ◽  
M. Mittelbach ◽  
A. Peters ◽  
...  

Siemens H-Class. Siemens has developed the world-largest H-class Gas Turbine (SGT™) that sets unparalleled standards for high efficiency, low life cycle costs and operating flexibility. With a power output of 340+ MW, the SGT5–8000H gas turbine will be the primary driver of the new Siemens Combined Cycle Power Plant (SCC™) for the 50 Hz market, the SCC5–8000H, with an output of 530+ MW at more than 60% efficiency. After extensive lab and component testing, the prototype has been shipped to the power plant for an 18-month validation phase. In this paper, the compressor technology, which was developed for the Siemens H-class, is presented through its development and validation phases. Reliability and Availability. The compressor has been extensively validated in the Siemens Berlin Test Facility during consecutive engine test programs. All key parameters, such as mass flow, operating range, efficiency and aero mechanical behavior meet or exceed expectations. Six-sigma methodology has been exploited throughout the development to implement the technologies into a robust design. Efficiency. The new compressor technology applies the Siemens advanced aerodynamics design methodology based on the high performance airfoil (HPA) systematic which leads to broader operation range and higher efficiency than a standard controlled diffusion airfoil (CDA) design. Operational Flexibility. The compressor features an IGV and three rows of variable guide vanes for improved turndown capability and improved part load efficiency. Serviceability. The design has been optimized for serviceability and less complexity. Following the Siemens tradition, all compressor rotating blades can be replaced without rotor lift or destacking. Evolutionary Design Innovation. The compressor design incorporates the best features and experience from the operating fleets and technology innovation prepared through detailed research, analysis and lab testing in the past decade. The design tools are based on best practices from former Siemens KWU and Westinghouse with enhancements allowing for routine front-to-back compressor 3D CFD multistage analysis, unsteady blade row interaction, forced response analyses and aero-elastic analysis.


1998 ◽  
Vol 120 (2) ◽  
pp. 284-288 ◽  
Author(s):  
M. A. Paisley ◽  
D. Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet this goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high-efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Sign in / Sign up

Export Citation Format

Share Document