Performance and Cost Analysis of Advanced Gas Turbine Cycles With Precombustion CO2 Capture

Author(s):  
Stéphanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with precombustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost, and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown partial oxidation reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared with conventional solvent-based separation and benefit from the high-pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short-term and long-term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided (2006 Q1 basis). This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.

Author(s):  
Ste´phanie Hoffmann ◽  
Michael Bartlett ◽  
Matthias Finkenrath ◽  
Andrei Evulet ◽  
Tord Peter Ursin

This paper presents the results of an evaluation of advanced combined cycle gas turbine plants with pre-combustion capture of CO2 from natural gas. In particular, the designs are carried out with the objectives of high efficiency, low capital cost and low emissions of carbon dioxide to the atmosphere. The novel cycles introduced in this paper are comprised of a high-pressure syngas generation island, in which an air-blown POX reformer is used to generate syngas from natural gas, and a power island, in which a CO2-lean syngas is burnt in a large frame machine. In order to reduce the efficiency penalty of natural gas reforming, a significant effort is spent evaluating and optimizing alternatives to recover the heat released during the process. CO2 is removed from the shifted syngas using either CO2 absorbing solvents or a CO2 membrane. CO2 separation membranes, in particular, have the potential for considerable cost or energy savings compared to conventional solvent-based separation and benefit from the high pressure level of the syngas generation island. A feasibility analysis and a cycle performance evaluation are carried out for large frame gas turbines such as the 9FB. Both short term and long term solutions have been investigated. An analysis of the cost of CO2 avoided is presented, including an evaluation of the cost of modifying the combined cycle due to CO2 separation. The paper describes a power plant reaching the performance targets of 50% net cycle efficiency and 80% CO2 capture, as well as the cost target of 30$ per ton of CO2 avoided. This paper indicates a development path to this power plant that minimizes technical risks by incremental implementation of new technology.


Author(s):  
Mircea Fetescu

The High Efficiency-Coal and Gas (HE-C&G) is a hybrid power plant concept integrating Conventional Steam Power Plants (CSPP) and gas turbine / combined cycle plants. The gas turbine exhaust gas energy is recovered in the HRSG providing partial condensate and feedwater preheating and generating steam corresponding to the main boiler live steam conditions (second steam source for the ST). The concept, exhibiting very high design flexibility, integrates the high performance Sequential Combustion gas turbines GT24/GT26 technology into a wide range of existing or new CSPP. Although HE-C&G refers to coal as the most abundant fossil fuel resource, oil or natural gas fired steam plants could be also designed or converted following the same principle. The HE-C&G provides very high marginal efficiencies on natural gas, up to and above 60%, very high operating and dispatching flexibility and on-line optimization of fuel and O&M costs at low capital investment. This paper emphasizes the operating flexibility and resulting benefits, recommending the HE-C&G as one of the most profitable options for generating power especially for conversion of existing CSPP with gas turbines.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Oghare Victor Ogidiama ◽  
Mohammad Abu Zahra ◽  
Tariq Shamim

High energy penalty and cost are major obstacles in the widespread use of CO2 capture techniques for reducing CO2 emissions. Chemical looping combustion (CLC) is an innovative means of achieving CO2 capture with less cost and low energy penalty. This paper conducts a detailed techno-economic analysis of a natural gas-fired CLC-based power plant. The power plant capacity is 1000 MWth gross power on a lower heating value basis. The analysis was done using Aspen Plus. The cost analysis was done by considering the plant location to be in the United Arab Emirates. The plant performance was analyzed by using the cost of equipment, cost of electricity, payback period, and the cost of capture. The performance of the CLC system was also compared with a conventional natural gas combined cycle plant of the same capacity integrated with post combustion CO2 capture technology. The analysis shows that the CLC system had a plant efficiency of 55.6%, electricity cost of 5.5 cents/kWh, payback time of 3.77 years, and the CO2 capture cost of $27.5/ton. In comparison, a similar natural gas combined cycle (NGCC) power plant with CO2 capture had an efficiency of 50.6%, cost of electricity of 6.1 cents/kWh, payback period of 4.57 years, and the capture cost of $42.9/ton. This analysis shows the economic advantage of the CLC integrated power plants.


Author(s):  
F. Eulitz ◽  
B. Kuesters ◽  
F. Mildner ◽  
M. Mittelbach ◽  
A. Peters ◽  
...  

Siemens H-Class. Siemens has developed the world-largest H-class Gas Turbine (SGT™) that sets unparalleled standards for high efficiency, low life cycle costs and operating flexibility. With a power output of 340+ MW, the SGT5–8000H gas turbine will be the primary driver of the new Siemens Combined Cycle Power Plant (SCC™) for the 50 Hz market, the SCC5–8000H, with an output of 530+ MW at more than 60% efficiency. After extensive lab and component testing, the prototype has been shipped to the power plant for an 18-month validation phase. In this paper, the compressor technology, which was developed for the Siemens H-class, is presented through its development and validation phases. Reliability and Availability. The compressor has been extensively validated in the Siemens Berlin Test Facility during consecutive engine test programs. All key parameters, such as mass flow, operating range, efficiency and aero mechanical behavior meet or exceed expectations. Six-sigma methodology has been exploited throughout the development to implement the technologies into a robust design. Efficiency. The new compressor technology applies the Siemens advanced aerodynamics design methodology based on the high performance airfoil (HPA) systematic which leads to broader operation range and higher efficiency than a standard controlled diffusion airfoil (CDA) design. Operational Flexibility. The compressor features an IGV and three rows of variable guide vanes for improved turndown capability and improved part load efficiency. Serviceability. The design has been optimized for serviceability and less complexity. Following the Siemens tradition, all compressor rotating blades can be replaced without rotor lift or destacking. Evolutionary Design Innovation. The compressor design incorporates the best features and experience from the operating fleets and technology innovation prepared through detailed research, analysis and lab testing in the past decade. The design tools are based on best practices from former Siemens KWU and Westinghouse with enhancements allowing for routine front-to-back compressor 3D CFD multistage analysis, unsteady blade row interaction, forced response analyses and aero-elastic analysis.


Author(s):  
Alex E. S. Green ◽  
Sean M. Bell

Solid waste (SW), mostly now wasted biomass, could fuel approximately ten times more of USA’s increasing energy needs than it currently does. At the same time it would create good non-exportable jobs, and local industries. Twenty four examples of wasted or under-utilized solids that contain appreciable organic matter are listed. Estimates of their sustainable tonnage lead to a total SW exceeding 2 billion dry tons. Now usually disposal problems, most of these SW’s, can be pyrolyzed into substitutes for or supplements to expensive natural gas. The large proportion of biomass (carbon dioxide neutral plant matter) in the list reduces Greenhouse problems. Pyrolysis converts such solid waste into a medium heating value gaseous fuel usually with a small energy expenditure. With advanced gas cleaning technologies the pyrogas can be used in high efficiency gas turbines or fuel cells systems. This approach has important environmental and efficiency advantages with respect to direct combustion in boilers and even air blown or oxygen blown partial combustion gasifiers. Since pyrolysis is still not a predictive science the CCTL has used an analytical semi-empirical model (ASEM) to organize experimental measurements of the yields of various product {CaHbOc} yields vs temperature (T) for r dry ash, nitrogen and sulfur free (DANSF) feedstock having various weight % of oxygen [O] and hydrogen [H]. With this ASEM each product is assigned 5 parameters (W, T0, D, p, q) in a robust analytical Y(T) expression to represent yields vs. temperature of any specific product from any specified feedstock. Patterns in the dependence of these parameters upon [O], [H], a, b, and c suggest that there is some order in pyrolysis yields that might be useful in optimize the throughput of particular pyrolysis systems used for waste to energy conversion (WEC). An analytical cost estimation (ACE) model is used to calculate the cost of electricity (COE) vs the cost of fuel (COF) for a SW pyrogas fired combined cycle (CC) system for comparison with the COE vs COF for a natural gas fired CC system. It shows that high natural gas prices solid waste can be changed from a disposal cost item to a valuable asset. Comparing COEs when using other SW capable technologies are also facilitated by the ACE method. Implications of this work for programs that combine conservation with waste to energy conversion in efforts to reach Zero Waste are discussed.


Author(s):  
Nikolett Sipöcz ◽  
Klas Jonshagen ◽  
Mohsen Assadi ◽  
Magnus Genrup

The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and has given rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs, and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture using an amine-based absorption process with monoethanolamine. To improve the costs of capture, the gas turbine GE 109FB is utilizing exhaust gas recirculation, thereby, increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from heat recovery steam generator. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple-pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept, thus, provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc., is reduced considerably.


Author(s):  
Nikolett Sipo¨cz ◽  
Klas Jonshagen ◽  
Mohsen Assadi ◽  
Magnus Genrup

The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and given the rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture, using an amine-based absorption process with Monoethanolamine. To improve the costs of capture the gas turbine, GE 109FB, is utilizing exhaust gas recirculation, thereby increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from HRSG. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept thus provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc. is reduced considerably.


Author(s):  
Peter J. Stuttaford ◽  
Khalid Oumejjoud

CO2 emissions generated by power plants make up a significant portion of global carbon emissions. Although there has been a great deal of focus on new power sources incorporating state of the art environmental protection systems, there has been little focus on addressing the issues of existing power plants. The purpose of this work is to address the options available to existing gas turbine based power plants to retrofit CO2 reduction measures cost effectively at the source of emissions, the combustor. Pre-combustion decarbonization is a highly efficient method of carbon removal, as only a small fraction of the gas turbine system flow needs to be addressed. This results in the requirement to burn a hydrogen based fuel, which presents challenges due to its highly reactive nature. The properties of hydrogen/syngas combustion are reviewed with emphasis on solutions for premixed combustion systems. Premixed combustion as opposed to diffusion combustion systems are key to retrofit solutions for existing gas turbines. Premixed systems provide the life cycle cost benefit, and heat rate benefit of not requiring the addition of diluent to the cycle to control emissions. Fuel flexibility is critical for retrofit systems, allowing operators to run on high hydrogen fuels as well as back-up standard natural gas to maximize power plant availability. Pre-combustion decarbonization may occur remote from the power plant at a centralized fuel processing facility, or it may be integrated into the combined cycle gas turbine power plant. Existing combined cycle power plants operating on natural gas could be modified to incorporate fuel decarbonization into the cycle, minimizing the parasitic loss of such a system while capturing carbon credits which are likely to become of increasing monetary value. An example cycle to address such integrated systems is presented. The focus of this work is to present a cycle to provide decarbonized fuel, cost effectively, from existing natural gas systems, as well as centralized coal/petcoke based fuel processing facilities. An additional focus is on the combustion system design requirements to burn such fuels, which are retrofitable to existing heavy duty gas turbine based power plants.


Author(s):  
Colin F. McDonald

The combustion gas turbine, operating in both simple and combined cycle modes, is rapidly becoming the preferred prime-mover for electrical power generation for both new plants, and in the repowering of old power stations. In replacing Rankine cycle plants the combustion gas turbine could become dominant in the power generation field early in the next century. Fired currently with natural gas, and later with gasified coal these gas turbines will operate for many decades with no concern about resource depletion. This paper addresses an extension of high efficiency gas turbine technology but uses a combustion and emission-free heat source, namely a high temperature gas cooled nuclear reactor. The motivation for this evolution is essentially twofold, 1) to introduce an environmentally benign plant that does not emit greenhouse gases, and 2) provide electrical power to nations that have no indigenous natural gas or coal supplies. This paper presents a confidence-building approach that eliminates risk towards the goal of making the nuclear gas turbine a reality in the 21st century.


Sign in / Sign up

Export Citation Format

Share Document