Effects of Freestream Turbulence on the Losses of a Highly-Loaded Compressor Stator Blade

Author(s):  
J. W. Douglas ◽  
S.-M. Li ◽  
B. Song ◽  
W. F. Ng ◽  
Toyotaka Sonoda ◽  
...  

Very little published literature documents the effects of different freestream turbulence intensities on compressor flows at realistically high Reynolds numbers. This paper presents a study of these effects on a transonic, linear, compressor stator cascade. The cascade consisted of high turning stator airfoils that had the camber of 55 degrees. The effects of freestream turbulence intensities of approximately 0.1% (baseline) and 1.6% were examined. Inlet Mach numbers to the cascade were tested from 0.55 to 0.89. Reynolds numbers, based on the inlet conditions and blade chord, varied between 1.0–2.0×106. Inlet flow angles to the cascade ranged from a choking to a stall condition. For the baseline cases, at most positive incidence angles to the cascade, surface oil flow visualization and Schlieren pictures showed a significant flow separation on the suction surface of the blade. Under these conditions, the increase in freestream turbulence from 0.1% to 1.6% significantly reduced the flow losses of the cascade (by as much as 57% in some cases). In other test conditions where no evidence depicted flow separation on the blade, there were no measurable effects on the losses due to the increase in freestream turbulence intensity. In addition, the increase of freestream turbulence intensity also improved the effective operating range of the cascade significantly (e.g., by 46% or higher).

1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Ali Mahallati ◽  
Steen A. Sjolander

Part II of this two-part paper presents the aerodynamic behavior of a low-pressure high-lift turbine airfoil, PakB, under the influence of incoming wakes. The periodic unsteady effects of wakes from a single upstream blade-row were measured in a low-speed linear cascade facility at Reynolds numbers of 25,000, 50,000 and 100,000 and at two freestream turbulence intensity levels of 0.4% and 4%. In addition, eight reduced frequencies between 0.53 and 3.2, at three flow coefficients of 0.5, 0.7 and 1.0 were examined. The complex wake-induced transition, flow separation and reattachment on the suction surface boundary layer were determined from an array of closely-spaced surface hot-film sensors. The wake-induced transition caused the separated boundary layer to reattach to the suction surface at all conditions examined. The time-varying profile losses, measured downstream of the cascade, increased with decreasing Reynolds number. The influence of increased freestream turbulence intensity was only evident in between wake-passing events at low reduced frequencies. At higher values of reduced frequency, the losses increased slightly and, for the cases examined here, losses were slightly larger at lower flow coefficients. An optimum wake-passing frequency was observed at which the profile losses were a minimum.


Author(s):  
Christopher G. Murawski ◽  
Rolf Sondergaard ◽  
Richard B. Rivir ◽  
Kambiz Vafai ◽  
Terrence W. Simon ◽  
...  

Low pressure turbines in aircraft experience large changes in flow Reynolds number as the gas turbine engine operates from takeoff to high altitude cruise. Low pressure turbine blades are also subject to regions of strong acceleration and diffusion. These changes in Reynolds number, strong acceleration, as well as elevated levels of turbulence can result in unsteady separation and transition zones on the surface of the blade. An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. The intent was to assess the effects of changes in Reynolds number, and freestream turbulence intensity. Flow Reynolds numbers, based on exit velocity and suction surface length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a slightly rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number resulted in a shrinkage of the separation region on the suction surface. Increasing both flow Reynolds numbers and freestream turbulence intensity compounded these effects such that at a Reynolds number of 300,000 and a freestream turbulence intensity of 8.1%, the separation zone was almost nonexistent. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. The width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. Numerical simulations were performed in support of experimental results. The numerical results compare well qualitatively with the low freestream turbulence experimental cases.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Ali Mahallati ◽  
Brian R. McAuliffe ◽  
Steen A. Sjolander ◽  
Thomas J. Praisner

This two-part paper presents a detailed experimental investigation of the laminar separation and transition phenomena on the suction surface of a high-lift low-pressure turbine airfoil, PakB. The first part describes the influence of Reynolds number, freestream turbulence intensity and turbulence length scale on the PakB airfoil under steady inflow conditions. The present measurements are distinctive in that a closely-spaced array of hot-film sensors has allowed a very detailed examination of the suction surface boundary layer behavior. In addition, this paper presents a technique for interpreting the transition process in steady, and periodically unsteady, separated flows based on dynamic and statistical properties of the hot-film measurements. Measurements were made in a low-speed linear cascade facility at Reynolds numbers between 25,000 and 150,000 at three freestream turbulence intensity levels of 0.4%, 2%, and 4%. Two separate grids were used to generate turbulence intensity of 4% with integral length scales of about 10% and 40% of the airfoil axial chord length. While the higher levels of turbulence intensity promoted earlier transition and a shorter separation bubble, turbulence length scale did not have a noticeable effect on the transition process. The size of the suction side separation bubble increased with decreasing Reynolds number, and under low freestream turbulence levels the bubble failed to reattach at low Reynolds numbers. As expected, the losses increased with the length of the separation bubble, and increased significantly when the bubble failed to reattach.


Author(s):  
Ali Mahallati ◽  
Brian R. McAuliffe ◽  
Steen A. Sjolander ◽  
Thomas J. Praisner

This two-part paper presents a detailed experimental investigation of the laminar separation and transition phenomena on the suction surface of a high-lift low-pressure (LP) turbine airfoil, PakB. The first part describes the influence of Reynolds number, freestream turbulence intensity and turbulence length scale on the PakB airfoil under steady inflow conditions. The present measurements are distinctive in that a closely-spaced array of hot-film sensors has allowed a very detailed examination to be made of both the steady and unsteady behaviour of the suction surface boundary layer. In addition, this paper presents a technique for interpreting the transition process in steady, and periodically unsteady, separated flows based on dynamic and statistical properties of the hot-film measurements. Measurements were made at Reynolds number varying from 25,000 to 150,000 and for freestream turbulence intensities of 0.4%, 2% and 4%. Two separate grids were used to generate turbulence intensity of 4% with integral length scales of about 10% and 40% of the airfoil axial chord length. The first is comparable with the turbulence length scales expected in the engine and the second is considerably larger. While the higher levels of freestream turbulence intensity promoted earlier transition and a shorter separation bubble, the varying turbulence length scale did not have a noticeable effect on the transition process. The size of the separation bubble increased with decreasing Reynolds number, and under low freestream turbulence levels the bubble failed to reattach at low Reynolds numbers. As expected, the losses increased with the length of the separation bubble on the suction side of the airfoil, and increased significantly when the bubble failed to reattach.


Author(s):  
Ali Mahallati ◽  
Steen A. Sjolander

The relative motion of rotor and stator blade rows causes periodically unsteady flows that influence the performance of airfoils through their effects on the boundary layer development. Part 1 of this two-part paper described the influence of Reynolds number, freestream turbulence intensity and turbulence length scales on a low-pressure (LP) high-lift turbine airfoil, PakB, under steady inlet flow conditions. The aerodynamic behaviour of the same airfoil under the influence of incoming wakes is presented in Part 2. The unsteady effects of wakes from a single upstream blade-row were measured in a low-speed linear cascade facility at Reynolds numbers of 25000, 50000 and 100000 and at two freestream turbulence intensity levels of 0.4% and 4%. In addition, eight reduced frequencies between 0.53 and 3.2, at three flow coefficients of 0.5, 0.7 and 1.0 were examined. The complex wake-induced transition, flow separation and reattachment on the suction surface boundary layer was determined from an array of closely-spaced surface hot-film sensors. The wake-induced transition caused the separated boundary layer to reattach to the suction surface at all conditions examined. The time-varying profile losses were measured downstream of the trailing edge. Profile losses increase with decreasing Reynolds number and the influence of increased freestream turbulence intensity is only evident in between wake-passing events at low reduced frequencies. At higher values of reduced frequency, the losses increase slightly and for the cases examined here, losses were slightly larger at lower flow coefficients than the higher flow coefficients. An optimum wake-passing frequency was observed at which the profile losses were a minimum.


Author(s):  
Kenneth Van Treuren ◽  
Tyler Pharris ◽  
Olivia Hirst

The low-pressure turbine has become more important in the last few decades because of the increased emphasis on higher overall pressure and bypass ratios. The desire is to increase blade loading to reduce blade counts and stages in the low-pressure turbine of a gas turbine engine. Increased turbine inlet temperatures for newer cycles results in higher temperatures in the low-pressure turbine, especially the latter stages, where cooling technologies are not used. These higher temperatures lead to higher work from the turbine and this, combined with the high loadings, can lead to flow separation. Separation is more likely in engines operating at high altitudes and reduced throttle setting. At the high Reynolds numbers found at takeoff, the flow over a low-pressure turbine blade tends to stay attached. At lower blade Reynolds numbers (25,000 to 200,000), found during cruise at high altitudes, the flow on the suction surface of the low-pressure turbine blades is inclined to separate. This paper is a study on the flow characteristics of the L1A turbine blade at three low Reynolds numbers (60,000, 108,000, and 165,000) and 15 turbulence intensities (1.89% to 19.87%) in a steady flow cascade wind tunnel. With this data, it is possible to examine the impact of Reynolds number and turbulence intensity on the location of the initiation of flow separation, the flow separation zone, and the reattachment location. Quantifying the change in separated flow as a result of varying Reynolds numbers and turbulence intensities will help to characterize the low momentum flow environments in which the low-pressure turbine must operate and how this might impact the operation of the engine. Based on the data presented, it is possible to predict the location and size of the separation as a function of both the Reynolds number and upstream freestream turbulence intensity (FSTI). Being able to predict this flow behavior can lead to more effective blade designs using either passive or active flow control to reduce or eliminate flow separation.


1981 ◽  
Vol 103 (3) ◽  
pp. 441-447 ◽  
Author(s):  
E. M. Sparrow ◽  
F. Samie ◽  
S. C. Lau

Wind tunnel experiments were performed to determine heat transfer coefficients and fluid flow patterns for a thermally active surface elevated above a parallel host surface. The step-like blockage associated with the elevation causes flow separation and recirculation on the forward portion of the thermally active surface. Four parameters were varied during the course of the experiments, including the angle of attack of the oncoming airflow relative to the surface, the step height, the extent of the host surface which frames the active surface (i.e., the skirt width), and the Reynolds number. Flow visualization studies, performed with the oil-lampblack technique, showed that the streamwise extent of the separation zone increases with decreasing angle of attack, with larger step heights and skirt widths, and at higher Reynolds numbers. At larger angles of attack, separation does not occur. The experimentally determined heat transfer coefficients were found to increase markedly due to the flow separation, and separation-related enhancements as large as a factor of two were encountered. The enhancement was accentuated at small angles of attack, at large step heights and skirt widths, and at high Reynolds numbers. A main finding of the study is that the separation-affected heat transfer coefficients are generally greater than those for no separation, so that the use of the latter may underestimate the heat transfer rates. For an application such as a retrofit solar collector, such an underestimation of the wind-related heat loss would yield an optimistic prediction of the collector efficiency.


2004 ◽  
Vol 126 (2) ◽  
pp. 257-265 ◽  
Author(s):  
Qiang Zhang ◽  
Sang Woo Lee ◽  
Phillip M. Ligrani

The effects of surface roughness on the aerodynamic performance of turbine airfoils are investigated with different inlet turbulence intensity levels of 0.9%, 5.5% and 16.2%. Three symmetric airfoils, each with the same shape and exterior dimensions, are employed with different rough surfaces. The nonuniform, irregular, 3-D roughness is characterized using the equivalent sand grain roughness size. Mach numbers along the airfoil range from 0.4 to 0.7. Chord Reynolds numbers based on inlet and exit flow conditions are 0.54×106 and 1.02×106, respectively. The contributions of varying surface roughness and turbulence intensity level to aerodynamic losses, Mach number profiles, normalized kinetic energy profiles, and Integrated Aerodynamics Losses (IAL) are quantified. Results show that effects of changing the surface roughness condition on IAL values are substantial, whereas the effects of different inlet turbulence intensity levels are generally relatively small.


Sign in / Sign up

Export Citation Format

Share Document