Experimental Investigation of Vane Clocking in a One and 1/2 Stage High Pressure Turbine

Author(s):  
Charles W. Haldeman ◽  
Michael G. Dunn ◽  
John W. Barter ◽  
Brian R. Green ◽  
Robert F. Bergholz

Aerodynamic measurements were acquired on a modern single-stage, transonic, high-pressure turbine with the adjacent low-pressure turbine vane row (a typical civilian one and one-half stage turbine rig) to observe the effects of low-pressure turbine vane clocking on overall turbine performance. The turbine rig (loosely referred to in this paper as the stage) was operated at design corrected conditions using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF). The research program utilized uncooled hardware in which all three airfoils were heavily instrumented at multiple spans to develop a full clocking dataset. The low-pressure turbine vane row (LPTV) was clocked relative to the high-pressure turbine vane row (HPTV). Various methods were used to evaluate the influence of clocking on the aeroperformance (efficiency) and the aerodynamics (pressure loading) of the LPTV, including time-resolved and time-averaged measurements. A change in overall efficiency of approximately 2–3% due to clocking effects is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average surface pressures are highest on the LPTV and the time-resolved surface pressure (both in the time domain and frequency domain) show the least amount of variation. The overall effect is obtained by integrating over the entire airfoil, as the three-dimensional effects on the LPTV surface are significant. This experimental data set validates several computational research efforts that suggested wake migration is the primary reason for the perceived effectiveness of vane clocking. The suggestion that wake migration is the dominate mechanism in generating the clocking effect is also consistent with anecdotal evidence that fully cooled engine rigs do not see a great deal of clocking effect. This is consistent since the additional disturbances induced by the cooling flows and/or the combustor make it extremely difficult to find an alignment for the LPTV given the strong 3D nature of modern high-pressure turbine flows.

2004 ◽  
Vol 127 (3) ◽  
pp. 512-521 ◽  
Author(s):  
Charles W. Haldeman ◽  
Michael Dunn ◽  
John W. Barter ◽  
Brian R. Green ◽  
Robert F. Bergholz

Aerodynamic measurements were acquired on a modern single-stage, transonic, high-pressure turbine with the adjacent low-pressure turbine vane row (a typical civilian one and one-half stage turbine rig) to observe the effects of low-pressure turbine vane clocking on overall turbine performance. The turbine rig (loosely referred to in this paper as the stage) was operated at design corrected conditions using the Ohio State University Gas Turbine Laboratory Turbine Test Facility. The research program utilized uncooled hardware in which all three airfoils were heavily instrumented at multiple spans to develop a full clocking dataset. The low-pressure turbine vane row (LPTV) was clocked relative to the high-pressure turbine vane row (HPTV). Various methods were used to evaluate the influence of clocking on the aeroperformance (efficiency) and the aerodynamics (pressure loading) of the LPTV, including time-resolved and time-averaged measurements. A change in overall efficiency of approximately 2–3% due to clocking effects is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average surface pressures are highest on the LPTV and the time-resolved surface pressure (both in the time domain and frequency domain) show the least amount of variation. The overall effect is obtained by integrating over the entire airfoil, as the three-dimensional (3D) effects on the LPTV surface are significant. This experimental data set validates several computational research efforts that suggested wake migration is the primary reason for the perceived effectiveness of vane clocking. The suggestion that wake migration is the dominate mechanism in generating the clocking effect is also consistent with anecdotal evidence that fully cooled engine rigs do not see a great deal of clocking effect. This is consistent since the additional disturbances induced by the cooling flows and∕or the combustor make it extremely difficult to find an alignment for the LPTV given the strong 3D nature of modern high-pressure turbine flows.


2004 ◽  
Vol 10 (6) ◽  
pp. 495-506 ◽  
Author(s):  
Roger L. Davis ◽  
Jixian Yao ◽  
John P. Clark ◽  
Gary Stetson ◽  
Juan J. Alonso ◽  
...  

Results from a numerical simulation of the unsteady flow through one quarter of the circumference of a transonic high-pressure turbine stage, transition duct, and low-pressure turbine first vane are presented and compared with experimental data. Analysis of the unsteady pressure field resulting from the simulation shows the effects of not only the rotor/stator interaction of the high-pressure turbine stage but also new details of the interaction between the blade and the downstream transition duct and low-pressure turbine vane. Blade trailing edge shocks propagate downstream, strike, and reflect off of the transition duct hub and/or downstream vane leading to high unsteady pressure on these downstreamcomponents. The reflection of these shocks from the downstream components back into the blade itself has also been found to increase the level of unsteady pressure fluctuations on the uncovered portion of the blade suction surface. In addition, the blade tip vortex has been found to have a moderately strong interaction with the downstream vane even with the considerable axial spacing between the two blade-rows. Fourier decomposition of the unsteady surface pressure of the blade and downstream low-pressure turbine vane shows the magnitude of the various frequencies contributing to the unsteady loads. Detailed comparisons between the computed unsteady surface pressure spectrum and the experimental data are shown along with a discussion of the various interaction mechanisms between the blade, transition duct, and downstream vane. These comparisons show-overall good agreement between the simulation and experimental data and identify areas where further improvements in modeling are needed.


Author(s):  
Roger L. Davis ◽  
Jixian Yao ◽  
John P. Clark ◽  
Gary Stetson ◽  
Juan J. Alonso ◽  
...  

Results from a numerical simulation of the unsteady flow through one quarter of the circumference of a transonic high-pressure turbine stage, transition duct, and low-pressure turbine first vane are presented and compared with experimental data. Analysis of the unsteady pressure field resulting from the simulation shows the effects of not only the rotor/stator interaction of the high-pressure turbine stage but also new details of the interaction between the blade and the downstream transition duct and low-pressure turbine vane. Blade trailing edge shocks propagate downstream, strike, and reflect off of the transition duct hub and/or downstream vane leading to high unsteady pressure on these downstream components. The reflection of these shocks from the downstream components back into the blade itself has also been found to increase the level of unsteady pressure fluctuations on the uncovered portion of the blade suction surface. In addition, the blade tip vortex has been found to have a moderately strong interaction with the downstream vane even with the considerable axial spacing between the two blade-rows. Fourier decomposition of the unsteady surface pressure of the blade and downstream low-pressure turbine vane shows the magnitude of the various frequencies contributing to the unsteady loads. Detailed comparisons between the computed unsteady surface pressure spectrum and the experimental data are shown along with a discussion of the various interaction mechanisms between the blade, transition duct, and downstream vane. These comparisons show overall good agreement between the simulation and experimental data and identify areas where further improvements in modeling are needed.


Author(s):  
Qingjun Zhao ◽  
Fei Tang ◽  
Huishe Wang ◽  
Jianyi Du ◽  
Xiaolu Zhao ◽  
...  

In order to explore the influence of hot streak temperature ratio on low pressure stage of a Vaneless Counter-Rotating Turbine, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending shock wave and outer-extending shock wave in the high pressure turbine rotor, the hotter fluid migrates towards the pressure surface of the low pressure turbine rotor, and the most of colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are predominated by the secondary flow in the low pressure turbine rotor. The effect of buoyancy on the hotter fluid is very weak in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative Mach number and the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the Vaneless Counter-Rotating Turbine decreases as the hot streak temperature ratio is increased.


Author(s):  
Chaoshan Hou ◽  
Hu Wu

The flow leaving the high pressure turbine should be guided to the low pressure turbine by an annular diffuser, which is called as the intermediate turbine duct. Flow separation, which would result in secondary flow and cause great flow loss, is easily induced by the negative pressure gradient inside the duct. And such non-uniform flow field would also affect the inlet conditions of the low pressure turbine, resulting in efficiency reduction of low pressure turbine. Highly efficient intermediate turbine duct cannot be designed without considering the effects of the rotating row of the high pressure turbine. A typical turbine model is simulated by commercial computational fluid dynamics method. This model is used to validate the accuracy and reliability of the selected numerical method by comparing the numerical results with the experimental results. An intermediate turbine duct with eight struts has been designed initially downstream of an existing high pressure turbine. On the basis of the original design, the main purpose of this paper is to reduce the net aerodynamic load on the strut surface and thus minimize the overall duct loss. Full three-dimensional inverse method is applied to the redesign of the struts. It is revealed that the duct with new struts after inverse design has an improved performance as compared with the original one.


Author(s):  
S. Zerobin ◽  
S. Bauinger ◽  
A. Marn ◽  
A. Peters ◽  
F. Heitmeir ◽  
...  

This paper presents an experimental study of the unsteady flow field downstream of a high pressure turbine with ejected purge flows, with a special focus on a flow field discussion using the mode detection approach according to the theory of Tyler and Sofrin. Measurements were carried out in a product-representative one and a half stage turbine test setup, which consists of a high-pressure turbine stage followed by an intermediate turbine center frame and a low-pressure turbine vane row. Four independent purge mass flows were injected through the forward and aft cavities of the unshrouded high-pressure turbine rotor. A fast-response pressure probe was used to acquire time-resolved data at the turbine center frame duct inlet and exit. The interactions between the stator, rotor, and turbine center frame duct are identified as spinning modes, propagating in azimuthal direction. Time-space diagrams illustrate the amplitude variation of the detected modes along the span. The composition of the unsteadiness and its major contributors are of interest to determine the role of unsteadiness in the turbine center frame duct loss generation mechanisms and to avoid high levels of blade vibrations in the low-pressure turbine which can in turn result in increased acoustic emissions. This work offers new insight into the unsteady flow behavior downstream of a purged high-pressure turbine and its propagation through an engine-representative turbine center frame duct configuration.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines, a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the Altitude Test Facility (ATF) aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multistage computational fluid dynamics (CFD) predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positive incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side (SS) phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions, vane 1 passage vortex fluid is involved in the midspan passage interaction, leading to a more distorted three-dimensional (3D) flow field.


Author(s):  
W. Sanz ◽  
M. Kelterer ◽  
R. Pecnik ◽  
A. Marn ◽  
E. Go¨ttlich

The demand of a further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight this intermediate turbine duct has to be as short as possible. This leads to an aggressive (high diffusion) S-shaped duct geometry. In order to investigate the influence of the blade tip gap height of a preceding rotor on such a high-diffusion duct flow a detailed measurement campaign in the Transonic Test Turbine Facility at Graz University of Technology has been performed. A high diffusion intermediate duct is arranged downstream a high-pressure turbine stage providing an exit Mach number of about 0.6 and a swirl angle of −15 degrees (counter swirl). A low-pressure vane row is located at the end of the duct and represents the counter rotating low pressure turbine at larger diameter. At the ASME 2007, results of these investigations were presented for two different tip gap heights of 1.5% span (0.8 mm) and 2.4% span (1.3 mm). In order to better understand the flow phenomena observed in the intermediate duct a detailed numerical study is conducted. The unsteady flow through the whole configuration is simulated for both gap heights as well as for a rotor with zero gap height. The unsteady data are compared at the stage exit and inside the duct to study the flow physics. The calculation of the zero gap height configuration allows to determine the influence of the tip leakage flow of the preceding rotor on the intermediate turbine duct. It turns out that for this aggressive duct the tip leakage flow has a very positive effect on the pressure recovery.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Martin Johansson ◽  
Thomas Povey ◽  
Kam Chana ◽  
Hans Abrahamsson

Flow in an intermediate turbine duct (ITD) is highly complex, influenced by the upstream turbine stage flow structures, which include tip leakage flow and nonuniformities originating from the upstream high pressure turbine (HPT) vane and rotor. The complexity of the flow structures makes predicting them using numerical methods difficult, hence there exists a need for experimental validation. To evaluate the flow through an intermediate turbine duct including a turning vane, experiments were conducted in the Oxford Turbine Research Facility (OTRF). This is a short duration high speed test facility with a 3/4 engine-sized turbine, operating at the correct nondimensional parameters for aerodynamic and heat transfer measurements. The current configuration consists of a high pressure turbine stage and a downstream duct including a turning vane, for use in a counter-rotating turbine configuration. The facility has the ability to simulate low-NOx combustor swirl at the inlet to the turbine stage. This paper presents experimental aerodynamic results taken with three different turbine stage inlet conditions: a uniform inlet flow and two low-NOx swirl profiles (different clocking positions relative to the high pressure turbine vane). To further explain the flow through the 1.5 stage turbine, results from unsteady computational fluid dynamics (CFD) are included. The effect of varying the high pressure turbine vane inlet condition on the total pressure field through the 1.5 stage turbine, the intermediate turbine duct vane loading, and intermediate turbine duct exit condition are discussed and CFD results are compared with experimental data. The different inlet conditions are found to alter the flow exiting the high pressure turbine rotor. This is seen to have local effects on the intermediate turbine duct vane. With the current stator–stator vane count of 32-24, the effect of relative clocking between the two is found to have a larger effect on the aerodynamics in the intermediate turbine duct than the change in the high pressure turbine stage inlet condition. Given the severity of the low-NOx swirl profiles, this is perhaps surprising.


Author(s):  
Brian D. Keith ◽  
Dipan K. Basu ◽  
Charles Stevens

The Controlled Pressure Ratio Engine (COPE) is a fourth generation variable cycle engine combining the attributes of a high temperature turbojet (high dry specific thrust and low Max power SFC) with those of a turbofan (low specific thrust and low part power SFC). Variation in turbine flow function is achieved by the Controlled Area Turbine (CAT) Nozzle concept, which utilizes an innovative cam driven scheme to achieve desired flow function changes while minimizing loss in aerodynamic performance. The single stage high pressure turbine is coupled with a two stage vaneless counter-rotating low pressure turbine. The COPE Turbine System Aero/Heat Transfer Design Validation Program, jointly conducted by GE Aircraft Engines and Allison Advanced Development Company under the direction of the Air Force Research Laboratory at Wright-Patterson Air Force Base, has succeeded in demonstrating advanced turbine technologies that will be utilized on the XTE76, XTE77, and Joint Strike Fighter engines. The various phases of this program evaluated variable area nozzle performance, high pressure turbine performance under the influence of varying flow function, and dual spool testing of the vaneless, counter-rotating low pressure turbine. Evaluation of the three phases demonstrated the aerodynamic capability of these turbine technologies, meeting pre-test predictions in overall and component efficiencies.


Sign in / Sign up

Export Citation Format

Share Document